Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:28:27.196Z Has data issue: false hasContentIssue false

Opto-electronic properties of co-deposited mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

Published online by Cambridge University Press:  27 June 2011

James Kakalios
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
U. Kortshagen
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
C. Blackwell
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
C. Anderson
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Y. Adjallah
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
L. R. Wienkes
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
K. Bodurtha
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
J. Trask
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Mixed-phase thin film materials, consisting of nanocrystalline semiconductors embedded within a bulk semiconductor or insulator, have been synthesized in a dual-chamber co-deposition system. A flow-through plasma reactor is employed to generate nanocrystalline particles, that are then injected into a second, capacitively-coupled plasma deposition system in which the surrounding semiconductor or insulating material is deposited. Raman spectroscopy, X-ray diffraction and high resolution TEM confirm the presence of nanocrystals homogenously embedded throughout the a-Si:H matrix. In undoped nc-Si within a-Si:H (a/nc-Si:H), the dark conductivity increases with crystal fraction, with the largest enhancement of several orders of magnitude observed when the nanocrystalline density corresponds to a crystalline fraction of 2 – 4%. These results are consistent with the nc donating electrons to the surrounding a-Si:H matrix without a corresponding increase in dangling bond density for these films. In contrast, charge transport in n-type doped a/nc-Si:H films is consistent with multi-phonon hopping, possibly through extended nanocrystallite clusters with weak electron-phonon coupling. The flexibility of the dual-chamber co-deposition process is demonstrated by the synthesis of mixed-phase thin films comprised of two distinct chemical species, such as germanium nanocrystallites embedded in a-Si:H and Si nanocrystallites embedded within an insulating a-SiNx:H film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gusev, A. I. and Rempe, A. A., Nanocrystalline Materials (Cambridge International Scence Publishing, 2004).Google Scholar
2. Butte, R., Meaudre, R., Meaudre, M., Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. R., Phil. Mag. B 79, 1079 (1999).10.1080/13642819908214860Google Scholar
3. Lubianiker, Y., Cohen, J. D., Jin, H. C., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).10.1103/PhysRevB.60.4434Google Scholar
4. Kamei, T., Stradins, P., Matsuda, A., Appl. Phys. Lett., 74, 1707, (1999).10.1063/1.123662Google Scholar
5. Fontcuberta i Morral, A., Hofmeister, H., and Roca i Cabarrocas, P., J. Non-Crystal. Solids, 299-302, 284 (2002).10.1016/S0022-3093(01)01007-9Google Scholar
6. Yang, J., Lord, K., Guha, S., Ovshinski, S.R., Materials Research Society Symposium - Proceedings, 609, pp. A15.4.1, (2000).10.1557/PROC-609-A15.4Google Scholar
7. Collins, R. W., Ferlauto, A.S., Ferreira, G.M., Joohyun, K., et al. ., Materials Research Society Symposium - Proceedings, 762, pp. A.10.1, (2003).Google Scholar
8. Ferlauto, A. S., Ferreura, G.M., Koveal, R.J., Pearce, J.M., Wronski, C.R., Collins, R.W., et al. ., Materials Research Society Symposium - Proceedings, 762, pp. A5.10, (2003).Google Scholar
9. Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J., and Collins, R. W., Mater. Res. Soc. Symp. Proc. 715, 459 (2002).Google Scholar
10. Mangolini, L., Thimsen, E., Kortshagen, U., Nano Lett. 5, 655 (2005).Google Scholar
11. Anderson, C., Blackwell, C., Deneen, J., Carter, C. B., Kortshagen, U., and Kakalios, J., Materials Research Society Symposium - Proceedings, 910, 79 (2006).Google Scholar
12. Adjallah, Y., Anderson, C., Kortshagen, U., and Kakalios, J., J. Appl. Phys. 107, 43704 (2010).10.1063/1.3285416Google Scholar
13. Wienkes, L. R., Blackwell, C., and Kakalios, J., this proceedings.Google Scholar
14. Blackwell, C., Anderson, C., Deneen, J., Carter, C. B., Kortshagen, U., and Kakalios, J., Materials Research Society Symposium - Proceedings, 910, 181 (2006).Google Scholar
15. Fuchs, N. A., The Mechanics of Aerosols (Dover, New York, 1964).Google Scholar
16. Williams, D. B. and Carter, C. B., Transmission Electron Microscopy (Plenum, New York, 1996).10.1007/978-1-4757-2519-3Google Scholar
17. Richter, H., Wang, Z. P. and Ley, L., Solid State Commun. 39, 625 (1981); V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn and F. Huisken, J. Appl. Phys. 86, 1921(1999); G. Viera, S. Huet and L. Boufendi, J. Appl. Phys. 90, 4175 (2001); R. Meyer and D. Comtesse, Phys. Rev. B 83, 014301 (2011). Google Scholar
18. Wienkes, L. R., Besaws, A., Anderson, C., Bobela, D., Stradins, P., Kortshagen, U., and Kakalios, J. Materials Research Society Symposium - Proceedings, 1245, 201 (2010).Google Scholar
19. Marra, D. C., Edelberg, E. A., Naone, R. L., and Aydil, E. S., J. Vac. Sci. Technol. A 16, 3199 (1998).10.1116/1.581520Google Scholar
20. Stutzmann, M. and Street, R. A., Phys. Rev. Lett. 54, 1836 (1985).10.1103/PhysRevLett.54.1836Google Scholar
21. Stutzmann, M., Biegelsen, D. K. and Street, R. A., Phys. Rev. B 35, 5666 (1987).10.1103/PhysRevB.35.5666Google Scholar
22. Kakalios, J. and Street, R. A., Phys. Rev. B 34, 6014 (1986).10.1103/PhysRevB.34.6014Google Scholar
23. Kakalios, J., Street, R. A. and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).10.1103/PhysRevLett.59.1037Google Scholar
24. Wienkes, L. R., Hutchinson, T., Blackwell, C., and Kakalios, J., J. Appl. Phys. (submitted).Google Scholar
25. Zabrodskii, A. G. and Shlimak, I. S., Sov. Phys. Semicond. 9, 391 (1975); A. G. Zabrodskii, Sov. Phys. Semicond. 11, 345(1977). Google Scholar
26. Hill, R. M., Phys. Stat. Sol. (a) 35, K29 (1976).Google Scholar
27. Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford University Press, 1979); Mott, N. F., Philos. Mag. 19, 835 (1969).Google Scholar
28. Shimakawa, K., Phys. Rev. B, 39, 12933, (1989).Google Scholar
29. Shimakawa, K., Miyake, K., Phys. Rev. Lett. 61, 994, (1988); K. Shimakawa, K. Miyake, Phys. Rev. B, 39, 7578, (1989). Google Scholar
30. Kivelson, S., Phys. Rev. Lett. 46,1344 (1981); S. Kivelson, Phys. Rev. B, 25, 3798, (1982). 10.1103/PhysRevLett.46.1344Google Scholar
31. Sen, S. and Ghosh, A., J. Phys.: Condens. Matter 11, 1529, (1999).Google Scholar
32. Bhattacharya, S., Chaudhuri, B. K. and Sakata, H., J. Appl. Phys. 88, 5033 (2000).10.1063/1.1317237Google Scholar
33. Shimakawa, K., Philos. Mag. B 60, 377 (1989).10.1080/13642818908205914Google Scholar
34. Triberis, G P, Friedman, L. R, J. Phys. C: Solid State Phys. 14, 4631, (1981).10.1088/0022-3719/14/31/012Google Scholar
35. Singh, Mahi R., Bart, Graeme, Zinke-Allmang, Martin, Nanoscale Res. Lett. 5, 501, (2010).10.1007/s11671-010-9548-7Google Scholar
36. Mansour, E., El-Egili, K., El-Damrawi, G., Physica B 389, 355, (2007).10.1016/j.physb.2006.07.017Google Scholar
37. Emin, D., Phys. Rev. Lett. 32, 303 (1974).Google Scholar
38. Efros, A. L. and Shklovskii, B. I., J. Phys. C 8, L49 (1975).Google Scholar
39. Hayashi, S., Ito, M. and Kanamori, H., Solid State Comm. 44, 75 (1982).10.1016/0038-1098(82)90717-7Google Scholar
40. Picco, A., Bonera, E., Grilli, E., Guzzi, M., Giarola, M., Mariotto, G., Chrastina, D. and Isella, G., Phys. Rev. B 82, 115317 (2010).10.1103/PhysRevB.82.115317Google Scholar
41. Mackenzie, K. D., Burnett, J. H., Eggert, J. R., Li, Y. M. and Paul, W., Phys. Rev. B 38, 6120 (1988).Google Scholar
42. Street, R. A., Tsai, C. C., Stutzmann, M. and Kakalios, J., Philos. Mag. B 56, 289 (1987).10.1080/13642818708221318Google Scholar
43. Hanrath, T. and Korgel, B. A., J. Phys. Chem. B 109, 5518 (2005); S. Zhang, E. R. Hamesath, D. E. Perea E. Wijaya, J. L. Lensch-Falk and L. J. Lauhon, Nano Lett. 9, 3268(2009). Google Scholar
44. Park, J.-S., Ryu, B., Moon, C.-H. and Chang, K. J., Nano Lett., 10, 116 (2010).10.1021/nl9029972Google Scholar
45. Zhang, B., Shrestha, S., Green, M. A. and Conibeer, G., Appl. Phys. Lett. 97, 132109 (2010).10.1063/1.3496031Google Scholar
46. Anthony, R. and Kortshagen, U., Phys. Rev. B 80, 115407 (2009).10.1103/PhysRevB.80.115407Google Scholar
47. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E. F., and Chan, K., Appl. Phys. Lett., 68, 1377 (1996).10.1063/1.116085Google Scholar
48. Lu, T. Z., Alexe, M., Scholz, R., Talelaev, V. and Zacharias, M., Appl. Phys. Lett., 87, 202110 (2005).Google Scholar