Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:32:12.360Z Has data issue: false hasContentIssue false

Optimized Processing Condition for a Photocrosslinkable Stable Nonlinear Optical Polymer

Published online by Cambridge University Press:  21 February 2011

Jun Y. Lee
Affiliation:
Department of Chemistry, University of Lowell, Lowell, MA 01854
Woo H. Kim
Affiliation:
Department of Chemistry, University of Lowell, Lowell, MA 01854
Braja K. Mandal
Affiliation:
Department of Chemistry, University of Lowell, Lowell, MA 01854
Jayant Kumar
Affiliation:
Department of Physics, University of Lowell, Lowell, MA 01854
Sukant K. Tripathy
Affiliation:
Department of Chemistry, University of Lowell, Lowell, MA 01854
Get access

Abstract

The optimum processing condition for a photocrosslinking Nonlinear Optical(NLO) polymeric system was established. Parameters such as change in heat capacity at glass transition temperature, rate of decrease of absorbance of residual uncrosslinked chromophores, and measurement of mass loss upon heating were used to set up the optimum condition. Poly(vinyl cinnamate) was used as the photocrosslinkable polymer and 3- cinnamoyloxy-4-[4-(N, N-diethylamino)-2-cinnamoyloxy phenyl azo] nitrobenzene was used as the NLO molecule. Poling at 70°C for 5 minutes followed by photocrosslinking with a dose of 2.5 mW/cm 2 for 10 minutes results in a stable second order nonlinear optical material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singer, K. D., Sohn, J. E., and Lalama, S. J., Appl. Phys. Lett.,49, 248(1986).Google Scholar
2. Hampsch, H. L., Yang, J., Wong, G. K., and Torkelson, J. M., Macromolecules, 21, 528(1988).Google Scholar
3. Mortazavi, M. A., Knoesen, A., Kowel, S. T., Higgins, B. G., and Dienes, A., J. Opt. Soc. Am., B6, 733(1989).CrossRefGoogle Scholar
4. Singer, K. D., Kuzyk, M. G., Holaand, W. R., Sohn, J. E., Lalama, S. J., Comizzolli, R. B., Katz, H. E., and Schilling, M. L., Appl. Phys. lett., 53, 1800(1988).CrossRefGoogle Scholar
5. eich, M., Sen, A., Looser, H., Yoon, D. Y., Bjorklund, G. C., Twieg, R., and Swalen, J., “Nonlinear Optical Properties of Organic Materials”, Proc. of SPIE, 971,128(1988).CrossRefGoogle Scholar
6. Ye, C., Marks, T. J., Yang, J., and Wong, G. K., Macromolecules, 20, 2322(1987).Google Scholar
7. M Eich, Reck, B., Yoon, D. Y., Willson, C. G., and Bjorklund, G. C., J. Appl. Phys., 66, 3241(1989).Google Scholar
8. Reck, B., Eich, M., Jungbauer, D., Twieg, R. J., Willson, C. G., Yoon, D. Y., and Bjorklund, G. C., “Nonlinear Optical Properties of Organic Materials”, Proc. of SPIE, 1147, 74(1989).Google Scholar
9. Jungbauer, D., Reck, B., Twieg, R., Yoon, D. Y., Willson, C. G., and Swalen, J. D., Appl. Phys. Lett., 56, 2610(1990).Google Scholar
10. Mandal, B. K., Kumar, J., Huang, J. C., and Tripathy, S. K., Macromol. Chem. Rapid Commun., in press.Google Scholar
11. Mandal, B. K., Chen, Y. M., Lee, J. Y., Kumar, J., and Tripathy, S. K., Appl. Phys. Lett., submitted.Google Scholar
12. Mandal, B. K., Lee, J. Y., Zhu, X. F., Chen, Y. M., Prakeenavincha, E., Kumar, J., and Tripathy, S. K., Synth. Met., in press.Google Scholar
13. Cheng, S. Z. D., Cao, M. Y., and Wunderlich, B., Macromolecules, 19, 1868(1986).Google Scholar