Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:50:41.394Z Has data issue: false hasContentIssue false

Optical Spectroscopies of Lithium-Intercalated Compounds

Published online by Cambridge University Press:  25 February 2011

C. Julien*
Affiliation:
Laboratoire de Physique des Solides, associé au CNRSUniversité P. et M. Curie, 4 place Jussieu, 75252 Paris Cédex 05, France
Get access

Abstract

Layered compounds are known to form lithium intercalation complexes as electron donor systems. A charge transfer which can strongly affect the electronic properties of the host lattice, and a change of preferential crystallographic parameters without destruction of the original structure are the main effects occuring during intercalation. Optical spectroscopies such as Raman scattering, far-infrared reflectivity, absorption measurements and photoluminescence have been carried out for the study of electronic and structural modifications. Upon lithium intercalation, lattice dynamics and electronic band structure change in numerous layered compounds. The optical properties of transition-metal dichalcogenides, non-transition metal chalcogenides and transition-metal oxides are presented and discussed with the aim of a better understanding of the intercalation process and establish some guide lines for improving the performances of these materials in their most important applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liang, W.Y., in Condensed Systems of Low Dimensionalitv NATO-ASI Series, Ser. B 253, edited by Beeby, J.L. (Plenum, New-York, 1991), p. 677.Google Scholar
2. Rouxel, J., Physica B 99, 3 (1980).Google Scholar
3. Winn, D.A., Schemilt, J.M. and Steele, B.C.H., Mat. Res. Bull. 11, 559 (1976).Google Scholar
4. Basu, S. and Worrell, W.L., in Fast Ion Transport in Solids. edited by Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsteram, 1979), p. 149.Google Scholar
5. Samaras, I., Saikh, S.I., Julien, C. and Balkanski, M., Mater. Sci. Eng. B 3, 209 (1989).Google Scholar
6. Julien, C., Jouanne, M., Burret, P.A. and Balkanski, M., Solid State Ionics 28–30, 1167 (1988).Google Scholar
7. Pereira, C.M. and Liang, W.Y., J. Phys. C 18, 6075 (1985).Google Scholar
8. Ratajack, M.T., Kannewurf, C.R., Revelli, J.F. and Wagner, J.B., Phys. Rev. B 17, 4674 (1978).Google Scholar
9. Beal, A.R. and Liang, W.Y., J. Phys. C 6, L482 (1973).Google Scholar
10. Sudharsanan, R., Bordhan, K.K., Clayman, B.P. and Irwin, J.C., Solid State Commun. 62, 563 (1987).Google Scholar
11. Sekine, T. and Balkanski, M., Mater. Sci. Eng. B 1, 155 (1988).Google Scholar
12. Barj, M., Sourisseau, C., Ouvrard, G. and Brec, R., Solid State Ionics 11, 179 (1983).Google Scholar
13. Acrivos, J.V., Liang, W.Y., Wilson, J.A. and Yoffe, A.D., J. Phys. C 4, L18 (1979).Google Scholar
14. Whangbo, M.H., Brec, R., Ouvrard, G. and Rouxel, J., Inorg. Chemistry 24, 2459 (1985).Google Scholar
15. Rouxel, J., J. Solid State Chem. 17, 223 (1976).Google Scholar
16. Liang, W. Y., Mater. Sci. Eng. B 3, 139 (1989).Google Scholar
17. McCanny, J.V., J. Phys. C 12, 3263 (1979).Google Scholar
18. Umigar, C., Ellis, D.E., Wang, D.S., Krakaver, H. and Posternak, M., Phys. Rev. B 26, 4935 (1982).Google Scholar
19. Julien, C., Samaras, I., Gorochov, O. and Ghorayeb, A.M., Phys. Rev. B 45, 13390 (1992).Google Scholar
20. Kukkonen, C.A., Kaiser, W.J., Logothetis, E.M., Blumenstock, B.J., Schroeder, P.A., Faile, S.P., Colella, R. and Gambold, J., Phys. Rev. B 24, 1691 (1981).Google Scholar
21. Chrissafis, K., Zamani, M., Kambas, K., Stoemenos, J., Economou, N.A., Samaras, I. and Julien, C., Mater. Sci. Eng. B 3, 145 (1989).Google Scholar
22. Py, M.A. and Haering, R.R., Can. J. Phys. 61, 76 (1983).Google Scholar
23. Sekine, T., Julien, C., Samaras, I., Jouanne, M. and Balkanski, M., Mater. Sci. Eng. B 3, 153 (1989).Google Scholar
24. Julien, C., Sekine, T. and Balkanski, M., Solid State Ionics 48, 225 (1991).Google Scholar
25. Sekine, T., Izumi, M., Nakashizu, T., Uchinokura, K. and Matsuura, E., J. Phys. Soc. Jpn. 49, 1009 (1980).Google Scholar
26. Balkanski, M., Jouanne, M., Ouvrard, G. and Scagliotti, M., J. Phys. C 20, 4397 (1987).Google Scholar
27. Sekine, T., Jouanne, M., Julien, C. and Balkanski, M., Mater. Sci. Eng. B 3, 91 (1989).Google Scholar
28. Clement, R., Gamier, O. and Mathey, Y., Nouv. J. Chimie 6, 13 (1982).Google Scholar
29. Julien, C. and Jouanne, M., in Chemical Physics of Intercalation. NATO-ASI Series, Ser. B 172, edited by Legrand, A.P. and Flandrois, S. (Plenum, New-York, 1987), p.433.Google Scholar
30. Kanehisa, M.A., Europhys. Conf. Abstracts A 12, 252 (1988).Google Scholar
31. Burret, P.A., Jouanne, M. and Julien, C., Z. Phys. B - Condensed Matter 76, 451 (1989).Google Scholar
32. Julien, C., Chevy, A. and Siapkas, D., Phys. Status Solidi A 118, 553 (1990).Google Scholar
33. Julien, C., Eddrief, M., Balkanski, M. and Chevy, A., Phys. Rev. B 46, 2435 (1992).Google Scholar
34. Sourisseau, C., Allah, N. and Danot, M., Eur. J. Solid State Inorg. Chem. 29, 111 (1992).Google Scholar
35. Nazri, G.A. and Julien, C., Solid State Ionics 53–56, 376 (1992).Google Scholar
36. Chaklanabish, N.C. and Maiti, H.S., Solid State Ionics 21, 207 (1986).Google Scholar