Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:28:01.073Z Has data issue: false hasContentIssue false

Optical Properties of Si Quantum Dots in Silica via an Implantation Mask

Published online by Cambridge University Press:  31 January 2011

Eric G. Barbagiovanni
Affiliation:
ebarbagi@uwo.ca, University of Western Ontario, Physics and Astronomy, London, Canada
Lyudmila V Goncharova
Affiliation:
lgonchar@uwo.ca, University of Western Ontario, Physics and Astronomy, London, Canada
Peter J Simpson
Affiliation:
psimpson@uwo.ca, University of Western Ontario, Physics and Astronomy, London, Canada
Nathan Armstrong
Affiliation:
narmstr7@uwo.ca, University of Western Ontario, Physics and Astronomy, London, Canada
Get access

Abstract

We studied photoluminescent properties and luminescent decay dynamics in Si quantum dots (QDs) produced by Si implantation in SiO2, and their modification by the application of an implantation mask. Silicon quantum dots were prepared by ion implantation, followed by high temperature annealing leading to nanocrystal nucleation and growth. The mask was prepared by spin-coating silica microspheres to achieve laterally-selective implantation, to control QD size and separation. Transmission electron microscopy (TEM) images were obtained to verify the diameter of the quantum dots. We observe a noticeable peak shift and narrowing in the photoluminescence spectra with the application of the implantation mask. Observed maxima in the photoluminescence spectra are compared with a quantum field theoretical model using an infinite confining 1D potential for Si quantum dots. We comment on the role of excitation transfer by observing a change in the dispersion exponent of the luminescent decay dynamics due to the mask.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mokry, C. R., Simpson, P. J., and Knights, A. P.., Proceedings SPIE 6343, June 2006. Photonics North 2006, Mathieu, Pierre, Editors, 63432P.Google Scholar
2 Bonafos, C., Colombeau, B., Altibelli, A., Carrada, M., Assayag, G. Ben, Garrido, B., López, M., Pérez-Rodríguez, A., Morante, J. R., and Claverie, A.., Nuc. Instr. and Meth. in Phys. Res. B 178, 17 (2001).Google Scholar
3 Knights, A. P.. To be published.Google Scholar
4 Delerue, C., Allen, G., and Lannoo, M.., Phys. Rev. B. 48, 11024 (1993).Google Scholar
5 Lockwood, D. J., Lu, Z. H., and Baribeau, J. M.., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
6 Aroutiounian, V., Petrosyan, S., Khachatryan, A., and Touryan, K.., J. Appl. Phys. 89, 2268 (2001).Google Scholar
7 Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., Arakawa, Y., Yamamoto, Y., and Vucković, J.., Phys. Rev. Lett. 95, 013904 (2005).Google Scholar
8 Dousse, A., Lanco, L., Suffczyński, J., Semenova, E., Miard, A., Lemaître, A., Sagnes, I., Roblin, C., Bloch, J., and Senellart, P.., Phys. Rev. Lett. 101, 267404 (2008).Google Scholar
9 Min, K. S., Shcheglov, K. V., Yang, C. M., Harry Atwater, A., Brongersma, M. L., and Polman, A.., Appl. Phys. Lett. 69, 2033 (1996).Google Scholar
10 Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G. F., Meda, L., Grilli, E., and Guzzi, M.., Appl. Phys. Lett. 66, 851 (1995).Google Scholar
11 Snoeks, E., Blaaderen, A. van, Dillen, T. van, Kats, C.M. van, Velikov, K., Brongersma, M.L., and Polman, A.., Nucl. Instr. and Meth. in Phys. Res. B. 178, 62 (2001).Google Scholar
12 Chen, B. T., Ng, V., and Adeyeye, A. O.., Phys. Rev. Lett., pages 71–4, 2001. Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference.Google Scholar
13 Biersack, J. P. and Ziegler, J. F., 2008. http://www.srim.org/.Google Scholar
14 Iwayama, T. S., Hama, T., Hole, D. E., and Boyd, I. W.., Vacuum 81, 17985 (2006).Google Scholar
15 López, M., Garrido, B., García, C., Pellegrino, P., Pérez-Rodríguez, A., Morante, J. R., Bonafos, C., Carrada, M., and Claverie, A.., Appl. Phys. Lett. 80, 1637 (2002).Google Scholar
16 Christiansen, S., Schneider, R., Scholz, R., Gösele, U., Stelzner, Th., Andrä, G., Wendler, E., and Wesch, W.., J. Appl. Phys. 100, 084323 (2006).Google Scholar
17 Mokry, C. R., Simpson, P. J., and Knights, A. P.., J. Appl. Phys. 105, 114301 (2009).Google Scholar
18 Sun, C. Q., Chen, T. P., Tay, B. K., Li, S., Huang, H., Zhang, Y. B., Pan, L. K., Lau, S. P., and Sun, X. W.., J. Phys. D: Appl. Phys. 34, 3470 (2001).Google Scholar
19 Reynaud, C., Guillois, O., Herlin-Boime, N., Ledoux, G., and Huisken, F., Mater. Res. Soc. Symp. Proc. 832, F6.2.1 (2005).Google Scholar