Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:47:29.191Z Has data issue: false hasContentIssue false

Optical properties of self-organised SSMBE and GSMBE Ge nanostructures grown on SiGe template layers on Si (118)

Published online by Cambridge University Press:  17 March 2011

G. Brémond
Affiliation:
Laboratoire de Physique de la Matière, UMR-CNRS, INSA de Lyon, bat 502, 20 Av. Albert Einstein - F-69621 Villeurbanne CEDEX, France
P. Ferrandis
Affiliation:
Laboratoire de Physique de la Matière, UMR-CNRS, INSA de Lyon, bat 502, 20 Av. Albert Einstein - F-69621 Villeurbanne CEDEX, France
A. Souifi
Affiliation:
Laboratoire de Physique de la Matière, UMR-CNRS, INSA de Lyon, bat 502, 20 Av. Albert Einstein - F-69621 Villeurbanne CEDEX, France
A. Ronda
Affiliation:
Centre de Recherche sur les Mécanismes de la Croissance Cristalline, CRMC2 - UP-CNRS, Campus de Luminy, case 913, F-13288 Marseille, France
I. Berbezier
Affiliation:
Centre de Recherche sur les Mécanismes de la Croissance Cristalline, CRMC2 - UP-CNRS, Campus de Luminy, case 913, F-13288 Marseille, France
Get access

Abstract

This work reports on the photoluminescence properties of self-organized fully strained Ge dots fabricated using two different growth techniques: gas source molecular beam epitaxy (GS-MBE) and solid source molecular beam epitaxy (SS-MBE). Variable temperature photoluminescence (PL) measurements were carried out on Si/(n)Ge/SiGe/Si structures (n varying from 1 to 7 monolayers) consisting in double layer structures (Ge(n)/Si1-xGex) deposited on (118) oriented Si substrates. The process used consists in realising in a first step a Si1-xGex template layer with a “self-patterned” morphology. Such patterning, based on periodic morphological modulation of the surface is used to confine and organise the Ge dots in a second deposition step. Similar series of experiments with various growth temperatures, Ge coverage levels and Si1-xGex concentrations (x) were done by both GS-MBE and SS- MBE. The PL from the 2D wetting layer in the case of n = 3 ML has been found to be more intense in GS-MBE thanks to the passivating role of the hydrogen atoms. The 2D to 3D growth transition is accompanied by the occurrence of a red-shifted broad PL band (L) attributed to the Ge dots. While broadened luminescence is obtained from dots directly deposited on the Si substrate, a narrower band is obtained from dots deposited on the template layer. Moreover the red-shift of the (L) band observed in the latter case is attributed to higher Ge concentration in the dots. On the other hand, there is no effect of the hydrogen on the formation of the islands which show similar optical and structural properties in both growth techniques. The main difference between GS-MBE and SS-MBE concerns a low energy shift in the PL of the SSMBE Ge dots we interpret as due to size, dispersion and Ge concentration or strain effects

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.see for instance Kasper, E. and Lyutovich, K. in “Properties of silicon germanium and SiGe:carbon” (INSPEC, The Institution of Electrical Engineers, London UK, 2000)Google Scholar
2.Berbezier, I., Gallas, B., Lapena, L., Fernandez, J., Derrien, J., Joyce, B., J. Vac. Sci. Technol. B 16, 1582(1998); I; Berbezier, M. Abdallah, A. Ronda, G. Brémond, Mat. Science and Engineering B69, 367(2000)Google Scholar
3.Wasserfall, J., Ranke, W., Surf. Sci. 315, 227. (1994)Google Scholar
4.Oshima, N., Koide, Y., Itoh, K., Zaima, S., Yasuda, Y., Appl. Phys. Lett. 57, 2434 (1990).Google Scholar
5.Koide, Y., Zaima, S., Itoh, K., Ohshima, N., Yasuda, Y., J. Appl. Phys. 68, 2164 (1990).Google Scholar
6.Sunamura, H., Usami, N., Shiraki, Y., Fukatsu, S., Appl. Phys. Lett. 66, 3024 (1995).Google Scholar
7.Sunamura, H., Fukatsu, S., Usami, N., Shiraki, Y., J. Crystal Growth 157, 265 (1995).Google Scholar
8.Gail, M., Abstreiter, G., Olajos, J., Engvall, J., Grimmeiss, H., Kibbel, H., Presting, H., Appl. Phys. Lett. 66, 2978 (1995).Google Scholar
9.Palange, E., Capellini, G., Gaspare, L. Di, Evagelisti, F., Appl. Phys. Lett. 68 (1996) 2982.Google Scholar
10.Eaglesham, D.J., Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
11.Voigtländer, B., Zinner, A., Appl. Phys. Lett. 63, 3055 (1993).Google Scholar
12.Abdallah, M., Berbezier, I., Dawson, P., Serpentini, M., Bremond, G., Joyce, B., Thin Solid Films 336, 256 (1998).Google Scholar