Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:52:35.399Z Has data issue: false hasContentIssue false

Optical Properties of Laser-Modified Diamond Surfaces

Published online by Cambridge University Press:  15 February 2011

A.V. Khomich
Affiliation:
Institute of Radio Engineering & Electronics, Moscow, Russia
V.I. Polyakov
Affiliation:
Institute of Radio Engineering & Electronics, Moscow, Russia, vip197@ire216.msk.su
S.M. Pimenov
Affiliation:
General Physics Institute, Moscow, Russia
V.V. Kononenko
Affiliation:
General Physics Institute, Moscow, Russia
V.I. Konov
Affiliation:
General Physics Institute, Moscow, Russia
S. Gloor
Affiliation:
Institute of Applied Physics, University of Bern, Bern, Switzerland
W. Lüthy
Affiliation:
Institute of Applied Physics, University of Bern, Bern, Switzerland
H.P. Weber
Affiliation:
Institute of Applied Physics, University of Bern, Bern, Switzerland
Get access

Abstract

Results are reported on laser-induced surface modification of 150-400 µm thick free-standing diamond films with excimer lasers under different irradiation regimes, including laser polishing at a grazing beam incidence or ablative etching of the films at the normal beam incidence. Properties of the laser-graphitized layer at the diamond surface were studied with optical spectroscopy techniques in the process of oxidative removal of the layer with increasing temperature of oxidation in ambient air. The optical properties and oxidation stability of the laser-modified surface layer were found to change through its thickness from the surface to the diamond interface, depending on the laser ablation regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sussmann, R.S., Brandon, J.R., Coe, S.E., Pickles, C.S.J., Sweeney, C.G., Wasenczuk, A., Wort, C.J.H., and Dodge, C.N., Finer Points 10 (2), p. 6 (1998).Google Scholar
2. Ageev, V. P., Bouilov, L. L., Konov, V. I., Kuzmichov, A. V., Pimenov, S. M., Prokhorov, A. M., Ralchenko, V. G., Spitsyn, B. V. and Chapliev, N. I., Soviet Physics-Doklady 33, p. 840 (1988).Google Scholar
3. Ralchenko, V.G. and Pimenov, S.M.: in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G. and Bigelow, L.K., Marcel Dekker, Inc., New York, 1997, pp. 9831021.Google Scholar
4. Geis, M.W., Rothschild, M., Kunz, R.R., Aggarwal, R., Wall, K.F., Parker, C.D., Mcintosh, K.A., Efremov, N.N., Zayhowski, J.J., Ehrilch, D.J., and Butler, J.E., Appl.Phys.Lett. 55, p. 2295 (1989).Google Scholar
5. Ralchenko, V.G., Smolin, A.A., Konov, V.I., Sergeichev, K.F., Sychov, I.A., Vlasov, I.I., Migulin, V.V., Voronina, S.V., and Khomich, A.V., Diamond Related Mater. 6, p. 417 (1997).Google Scholar
6. Gloor, S., Lüithy, W., and Weber, H.P., Diamond Films Technol. 7, p. 233 (1997).Google Scholar
7. Gloor, S., Lüithy, W., Weber, H.P., Pimenov, S.M., Ralchenko, V.G., Konov, V.I., Khomich, A.V., Appl. Surf. Sci., in press.Google Scholar
8. Tosin, P., Blatter, A. and Lüthy, W., J. Appl. Phys., 78, 3797 (1995).Google Scholar
9. Pimenov, S.M., Smolin, A.A., Ralchenko, V.G., Konov, V.I., Diamond Films Technol. 2, p. 201 (1993).Google Scholar
10. Khomich, A.V., Ralchenko, V.G., Smolin, A.A., Migulin, V.V., Pimenov, S.M., Vlasov, I.I., and Konov, V.I., J. Chemical Vapor Deposition, 5, p. 361 (1997).Google Scholar
11. Pimenov, S.M., Smolin, A.A., Ralchenko, V.G., Konov, V.I., Sokolina, G.A., Bantsekov, S.V., and Spitsyn, B.V., Diamond Relat. Mater. 2, p. 291 (1993).Google Scholar
12. Johnson, L.G. and Dresselhaus, G., Phys. Rev.B 7, p. 2273 (1973); J.M. Zhang and P.C. Eklund, J.Mater.Res. 2, p. 858 (1987).Google Scholar
13. Enckevort, W.J.P. van, J. Appl. Cryst., 20, p. 11 (1987).Google Scholar
14. Gloor, S., Pimenov, S.M., Obraztsova, E.D., Lithy, W., and Weber, H.P., Diamond Relat. Mater. 7, 607 (1998).Google Scholar
15. Obraztsova, E.D., Kuznetsov, V.L., Loubnin, E.N., Pimenov, S.M., Pereverzev, V.G., in Proc. NATO ARW “Nanoparticles in Solids and Solutions”, eds. Fendler, J.H. and Dekany, I., Vol. 18, p. 485, Kluwer, 1996.Google Scholar
16. Khomich, A.V., Kononenko, V.V., Pimenov, S.M., Konov, V.I., Gloor, S., Ltthy, W., and Weber, H.P., SPIE Proc. Vol. 3484, p. 166 (1998).Google Scholar
17. Joshi, A., Nimmagadda, R., and Herrington, J., J. Vac. Sci. Technol. A, 8, p.2137 (1990).Google Scholar
18. Jungnickel, G., Porezag, D., Frauenheim, Th., Heggie, M.I., Lambrecht, W.R.L., Segall, B., and Angus, J.C., Phys. Stat. Sol. (a) 154, p. 109 (1996).Google Scholar