Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:30:39.071Z Has data issue: false hasContentIssue false

Optical Detection of Magnetic Resonance (ODMR) Studies of the Electronic Structure of Complex Defects in GaP

Published online by Cambridge University Press:  26 February 2011

W. M. Chen
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
M. Godlewski
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
H. P. Gislason
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

Optical detection of magnetic resonance (ODMR) is applied to studies of neutral (“isoelectronic”) complex defects in GaP, via monitoring recombination of the excited bound exciton (BE) state associated with these defects. With examples of isoelectronic complex defects in GaP associated with C, Cu, Li and the PGa -antisite, it is shown how the ODMR data reveal the magnetic properties of both electrons and holes bound at such defects. The procedures to conclude on defect symmetry, structure and identity are also elucidated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Permanent address: Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Al. Lotnikow 32/46, Poland

**

Permanent address: Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland

References

REFERENCES

1. See Lannoo, e.g. M. and Bourgoin, J., Point Defects in Semiconductors I, (Springer-Verlag, Berlin, 1981); J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II, (Springer-Verlag, Berlin, 1983).Google Scholar
2.Hopfield, J.J., Thomas, D.G. and Lynch, R.T., Phys. Rev. Lett. 17, 312 (1966).Google Scholar
3.Cohen, E. and Sturge, M.D., Phys. Rev. B 15, 1039 (1977).Google Scholar
4.Cohen, E., Sturge, M.D., Lipari, W.O., Altarelli, M. and Baldereschi, A., Phys. Rev. Lett. 35, 1591 (1975).Google Scholar
5.Dean, P.J., Phys. Rev. B 4, 2596 (1971).Google Scholar
6.Luttinger, J.M., Phys. Rev. 102, 1030 (1956).Google Scholar
7.Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions, (Clarendon Press, Oxford, 1970).Google Scholar
8.Monemar, B., Holtz, P. O., Chen, W. M., Gislason, H. P., Lindefelt, U. and Pistol, M. E., Phys. Rev. B 34, 8656 (1986).Google Scholar
9.Chen, W. M., Zhao, Q. X., Monemar, B., Gislason, H. P. and Holtz, P. O., Phys. Rev. B35. 5722 (1987).Google Scholar
10.Monemar, B., Gislason, H.P., Chen, W.M. and Wang, Z.G., Phys. Rev. B 33, 4424 (1986).Google Scholar
11.Monemar, B., Lindefelt, U. and Pistol, M.E., J. Luminescence 36. 149 (1986).Google Scholar
12.Chen, W. M., Monemar, B., Gislason, H.P., Godlewski, M. and Pistol, M.E., to be published.Google Scholar
13.Chen, W. M., Monemar, B., Godlewski, M., Gislason, H.P. and Pistol, M.E., unpublished.Google Scholar
14.Chen, W. M. and Monemar, B., to be published.Google Scholar
15.Chen, W. M., Gislason, H.P. and Monemar, B., Phys. Rev. B 56, 5058 (1987).Google Scholar
16.Chen, W. M., Monemar, B. and Godlewski, M., to be published.Google Scholar
17.Chen, W. M., Monemar, B. and Godlewski, M., unpublished.Google Scholar