Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:31:15.871Z Has data issue: false hasContentIssue false

Optical Approaches to Real-Time Analysis and Control of Crystal Growth

Published online by Cambridge University Press:  28 February 2011

D. E. Aspnes*
Affiliation:
Bellcore, Red Bank, NJ 07701-7040
Get access

Abstract

A variety of optical methods are now available for studying surface processes and for monitoring layer thicknesses and compositions during semiconductor crystal growth by molecular beam epitaxy (MBE), organometallic chemical vapor deposition (OMCVD), and related techniques. Spectroellipsometry (SE) and spectroreflectometry (SR), the older, primarily bulk-sensitive probes, are now augmented by new, primarily surface-sensitive probes such as reflectance-difference spectroscopy (RDS), second-harmonic generation (SHG), and laser light scattering (LLS). Examples of real-time growth studies now include SE determinations of thicknesses and compositions of AlxGa1–xAs layers on GaAs by organometallic molecular beam epitaxy (OMMBE) to 10 Å thickness scales, RDS determinations of surface dielectric anisotropy spectra of various (001) GaAs surfaces relevant to crystal growth by MBE, and LLS determinations of the evolution of surface roughness during chemical vapor deposition (CVD) growth on Si. Proven capabilities suggest new applications, particularly to growth-interrupted and metastable systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Theeten, J. B., Hottier, F., and Hallais, J., J. Cryst. Growth 46, 245 (1979).Google Scholar
2. Hottier, F., Hallais, J., and Simondet, F., J. Appl. Phys. 51, 1599 (1980).Google Scholar
3. Hottier, F. and Theeten, J. B., J. Cryst. Growth 48, 644 (1980).Google Scholar
4. Monteil, Y., Favre, R., Raffin, P., Bouix, J., Vaille, M., and Gibart, P., J. Cryst. Growth 93, 159 (1988).Google Scholar
5. Liickerath, R., Tommack, P., Herding, A., Koss, H. J., Balk, P., Jensen, K F., and Richter, W., J. Cryst. Growth 93, 151 (1988).Google Scholar
6. Hebner, G. A., K Killeen, P., and Biefeld, R. M., J. Cryst. Growth 98, 293 (1989).Google Scholar
7. Gaskill, D. K, Kolubayev, V., Bottka, N., Sillmon, R. S., and Butler, J. E., J. Cryst. Growth 93, 127 (1988).Google Scholar
8. Aspnes, D. E., in Optical Properties of Solids, New Developments, ed. Seraphin, B. O. (North-Holland, Amsterdam, 1976), p. 799; Thin Solid Films 89, 249 (1982); Proc. SPIE 946, 112 (1988).Google Scholar
9. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
10. Collins, R. W., in Advances in Amorphous Semiconductors, ed. Fritsche, H. (World Scientific, Singapore, 1989), p. 1003.Google Scholar
11. Aspnes, D. E. and Chang, R. P. H., in Plasma Diagnostics, vol. 2, ed. by Auciello, O. and Flamm, D.L (Academic, New York, 1989), p. 67.Google Scholar
12. Drevillon, B., Proc. SPIE 1186, 110 (1990).Google Scholar
13. Aspnes, D. E. and Studna, A. A., Phys. Rev. Lett. 54, 1956 (1985).Google Scholar
14. Aspnes, D. E., Harbison, J. P., Studna, A. A., and L Florez, T., Phys. Rev. Lett. 59, 1687 (1987).Google Scholar
15. Harbison, J. P., Aspnes, D. E., Studna, A. A., Florez, L T., and Kelly, M. K, Appl. Phys. Lett. 52, 2046 (1988).Google Scholar
16. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L T., J. Vac. Sci. Technol. A 6, 1327 (1988).Google Scholar
17. Aspnes, D. E., Colas, E., Studna, A. A., Bhat, R., Koza, M. A., and Keramidas, V. G., Phys. Rev. Lett. 61, 2782 (1988).Google Scholar
18. Colas, E., Aspnes, D. E., Bhat, R., Studna, A. A., Koza, M. A., and Keramidas, V. G., J. Crystal Growth 94, 613 (1989).Google Scholar
19. Aspnes, D. E., Bhat, R., Colas, E., Keramidas, V. G., Koza, M. A., and Studna, A. A., J. Vac. Sci. Technol. A 7, 711 (1989).Google Scholar
20. Aspnes, D. E., Bhat, R., Colas, E., Florez, L T., Harbison, J. P., Kelly, M. K, Keramidas, V. G., Koza, M. A., and Studna, A. A., Proc. SPIE 1037, 2 (1989).Google Scholar
21. Aspnes, D. E., Chang, Y. C., Studna, A. A., Florez, L T., Farrell, H. H., and Harbison, J. P., Phys. Rev. Lett. 64, 192 (1990).Google Scholar
22. Jonsson, J., Deppert, K, Jeppsesen, S., Paulsson, G., Samuelson, L, and Schmidt, P., Appl. Phys. Lett. (in press).Google Scholar
23. Colas, E., Aspnes, D. E., Bhat, R., Studna, A. A., Koza, M. A., and Keramidas, V. G., Proc. SPIE 1186, 96 (1989); E. Colas, J. Cryst. Growth (to be published).Google Scholar
24. Iyer, S. S., Heinz, T. F., and Loy, M. M. T., J. Vac. Sci. Technol. B5, 709 (1987); T. F. Heinz, M. M. T. Loy, and S. S. Iyer, Mat. Res. Symp. Proc. 75, 697 (1987).Google Scholar
25. Stehlin, T., Feller, M., Guyot-Sionnest, P., and Shen, Y. R., Optics Lett. 13, 389 (1988).Google Scholar
26. Buhaenko, D. S., Francis, S. M., Goulding, P. A., and Pemble, M. E., J. Cryst. Growth 97, 595 (1989).Google Scholar
27. Robbins, D. J., Pidduck, A. J., Cullis, A. G., Chew, N. O., Hardeman, R. W., Gasson, D. B., Pickering, C., Daw, A. C., Johnson, M., and Jones, R., J. Crystal Growth 81, 421 (1987).Google Scholar
28. Robbins, D. J., Pidduck, A. J., Pickering, C., Young, I. M., and Glasper, J. L, Proc. SPIE 1012, 25 (1989).Google Scholar
29. Pidduck, A. J., Robbins, D. J., Young, I. M., and Patel, O., Thin Solid Films 183, 255 (1989); A. J. Pidduck, D. J. Robbins, D. B. Gasson, C. Pickering, and J. L Glasper, J. Electrochem. Soc. 136, 3088 (1989).Google Scholar
30. Pidduck, A. J., Robbins, D. J., Cullis, A. G., Gasson, D. B., and Glasper, J. L, J. Electrochem. Soc. 136, 3083 (1989).Google Scholar
31. Aspnes, D. E., Quinn, W. E., and Gregory, S., Appl. Phys. Lett. (in press).Google Scholar
32. Studna, A. A., Aspnes, D. E., Florez, L T., Wilkens, B. J., and Ryan, R. E., J. Vac. Sci. Technol. A 7, 3291 (1989).Google Scholar
33. Kobayashi, N. and Horikoshi, Y., J. Appl. Phys. Jpn. 28, L1880 (1989).Google Scholar
34. Makimoto, M., Yamauchi, Y., Kobayashi, N., and Horikoshi, Y., J. Appl. Phys. Jpn. 29, 1207 (1990).Google Scholar
35. Chang, Y. C. and Aspnes, D. E., Phys. Rev. (in press).Google Scholar
36. McCaulley, J. A., McCrary, V. R., and Donnelly, V. M., J. Phys. Chem. 93, 1148 (1989).Google Scholar
37. Fukui, T. and Saito, H., J. Vac. Sci. Technol. B6, 1373 (1988); J. M. Gaines, P. M. Petroff, H. Kroemer, R. J. Simes, R. S. Geels, and J. H. English, J. Vac. Sci. Technol. B6, 1378 (1988).Google Scholar
38. Kondow, M., Kakibayashi, H., Tamaka, T., and Minagawa, S., Phys. Rev. Lett. 63, 884 (1989); A. Mascarenhas, S. Kurtz, A. Kibbler, and J. M. Olson, Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
39. Briones, F. (private communication).Google Scholar
40. Grundmann, M., Lienert, U., Bimberg, D., Fischer-Colbrie, A., and Miller, J. N., Appl. Phys. Lett. 55, 1765 (1989).Google Scholar
41. Sadwick, L P., Wang, K L, Joseph, D. L, and Hicks, R. F., J. Vac. Sci. Technol. B 7, 273 (1989).Google Scholar