No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Today, the overall performance of a multi-chip computing system is limited by the interconnection delay between chips. Conventional interconnects based on metal lines are expected to cause unmanageable problems with speed and power dissipation. Optical interconnects provide a solution to these problems. However, the low quantum efficiency associated with radiative recombination in silicon has so far prevented the demonstration of a practical laser. Recently stimulated emission has been demonstrated in Si nanocrystals prepared by ion-implantation. The reported material gain is high enough to realize a practical Si based laser. However, the optical filling factor in these samples was less than 10% due to the poor wave guiding nature of these structures.
In this work, we explore a possible way to achieve optical gain in nanocrystalline silicon superlattices. The samples are produced by growing alternating layers of amorphous silicon and SiO2 and then using a two step crystallization method to transform each amorphous silicon layer into a high density array of silicon nanocrystals having identical size. The waveguide structure is formed by sandwiching the superlattice between cladding layers. To measure optical gain we use the variable stripe length method where the amplified spontaneous emission emitted from the edge is measured as a function of the excitation length. Tuning from loss to gain was observed by just varying the pump power.