Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T11:50:27.417Z Has data issue: false hasContentIssue false

Open-Framework Copper Titanosilicates

Published online by Cambridge University Press:  01 February 2011

Xiqu Wang
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Houston, Houston, TX 77204–5003
Lumei Liu
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Houston, Houston, TX 77204–5003
Lingbao Wang
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Houston, Houston, TX 77204–5003
Allan. J. Jacobson
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Houston, Houston, TX 77204–5003
Get access

Abstract

Four open-framework copper titanosilicates have been synthesized by hydrothermal techniques. The crystal structure of Phase 1 determined from single crystal X-ray data is closely similar to that reported for the titanosilicate ETS-4 with ca. one third TiO5 pyramids randomly replaced by CuO4 squares. Phase 2 also has the ETS-4 structure but all the TiO5 pyramids are replaced by CuO4 squares which are not randomly disordered. Phase 3 with the composition Na8CuTi3Si16O43 has the same structure as the mineral narsarsukite, a titanosilicate closely related to the microporous titanosilicate ETS-10. Narsarsukite and ETS-10 have the same straight single chains of TiO6 octahedra which are partially substituted by CuO4 squares in 3. Phase 4 with the composition K4CuTiSi8O21 contains CuO4 squares and TiO5 tetragonal pyramids that crosslink a new type of silicate double layer to form an open framework.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuznicki, S. M., US Patent 4853202, 1989; US Patent 4938939, 1990.Google Scholar
2. Kuznicki, M., Bell, V. A., Petrovic, I., Desai, B. T., WO9932404A1, 1999.Google Scholar
3. Kuznicki, S. M., Bell, V. A., Nair, S., Hillhouse, H. W., Jacubinas, R. M., Braunbarth, C. M., Toby, B. H. and Tsapatsis, M., 2001, Nature, 412, 720.Google Scholar
4. Wang, X., Liu, L. and Jacobson, A. J., J. Am. Chem. Soc. 124, 7812 (2002).Google Scholar
5. Wang, X., Liu, L. and Jacobson, A. J., Angew. Chem., Int. Ed. 42 (2003) 2044.Google Scholar
6. Wang, X., Huang, J. and Jacobson, A. J., J. Am. Chem. Soc. 124 (2002) 15190.Google Scholar
7. Sandomirskii, P. A., Belov, N. V., Sov. Phys. Crystallogr., 1979, 24, 686.Google Scholar
8. Cruciani, G., De Luca, P., Nastro, A., Pattison, P., Microp. Mesop. Mater., 1998, 21, 143.Google Scholar
9. Braunbarth, C., Hillhouse, H. W., Nair, S., Tsapatsis, M., Burton, A., Lobo, R. F., Jacubinas, R., Kuznicki, S. M., Chem. Mater, 2000, 12, 1857.Google Scholar
10. Nair, S., Jeong, H-K., Chandrasekaran, A., Braunbarth, C., Tsapatsis, M., Kuznicki, S. M., Chem. Mater, 2001, 13, 4247.Google Scholar
11. Peacor, D. R. and Buerger, M. J., Amer. Mineralog., 47, 539 (1962).Google Scholar
12. Anderson, M. W., Terasaki, O., Ohsuna, T., Malley, P. J. O., Philippou, A., Mackay, S. P., Ferreira, A., Rocha, J., and Lidin, S., Nature, 367, 347 (1994).Google Scholar
13. Wang, X. and Jacobson, A. J., Chem. Comm., 1999, 973 (1999).Google Scholar