Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:53:33.646Z Has data issue: false hasContentIssue false

On the Thermoelectric Potential of Inverse Clathrates

Published online by Cambridge University Press:  31 January 2011

Matthias Falmbigl
Affiliation:
matthias.falmbigl@univie.ac.at, University of Vienna, Institute of Physical Chemistry, Vienna, Austria
Peter F Rogl
Affiliation:
peter.franz.rogl@univie.ac.at, University Vienna, Physikalische Chemie, Waehringerstrasse 42, Vienna, A-1090, Austria
Ernst Bauer
Affiliation:
Ernst.bauer@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Martin Kriegisch
Affiliation:
martin.kriegisch@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Herbert Müeller
Affiliation:
Herbert.Mueller@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Silke Paschen
Affiliation:
paschen@ifp.tuwien.ac.at, University of Technology, Institute of Solid State Physics, Vienna, Austria
Get access

Abstract

In the context of a general survey on the thermoelectric potential of cationic clathrates, formation, crystal chemistry and physical properties were investigated for novel inverse clathrates deriving from Sn19.3Cu4.7P22I8. Substitution of Cu by Zn and Sn by Ni was attempted to bring down electrical resistivity and lower thermal conductivity. Materials were synthesized by mechanical alloying using a ball mill and hot pressing. Structural investigations for all specimens confirm isotypism with the cubic primitive clathrate type I structure (lattice parameters a = ˜1.1 nm and space group type Pm-3n). Studies of transport properties evidence holes as the majority charge carriers. Thermal expansion data, measured in a capacitance dilatometer from 4 to 300 K on Sn19.3Cu1.7Zn3P19.92.1I8, compare well with literature data available for Sn24P19.62.4Br8 and for an anionic type I clathrate Ba8Zn8Ge38. From the rather complex crystal structure including split atom sites and lattice defects thermal conductivity in inverse clathrates is generally low. Following Zintl rules rather closely inverse clathrates tend to be semiconductors with attractive Seebeck coefficients. Thus for thermoelectric applications the main activity will have to focus on achieving low electrical resistivity in a compromise with still sufficiently high Seebeck coefficients.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M., Ed., CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 2006).Google Scholar
2 Venkatasubramanian, R., Siivola, E., O'Quinn, B., “Superlattice Thin-Film Thermoelectric Material and Device Technologies”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 49.149.15.Google Scholar
3 Gelbstein, Y., Dashevsky, Z., Dariel, M.P., Phys. Stat. Sol. (RRL) 1(6), 232–234 (2007).Google Scholar
4 Prenninger, P., Grytsiv, A., Rogl, P., Bauer, E., “TE-Materials with Better Efficiencies and Lower Costs - a Contradiction?, paper presented at the 1st Conference: Thermoelectrics -A Chance for the Automotive Industry?, Berlin, 23 – 24 October 2008.Google Scholar
5 Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Lett. 73, 178 (1998)10.1063/1.121747Google Scholar
6 Rogl, P., “Formation and Crystal Chemistry of Clathrates”, CRC Handbook of Thermoelectrics, ed Rowe, D.M. (CRC Press, Boca Raton, FL, 2006) pp. 32–1–32.Google Scholar
7 Shevelkov, A.V., Russian Chemical Reviews 77(1), 119 (2008).10.1070/RC2008v077n01ABEH003746Google Scholar
8 Menke, H., Schnering, H.G. von, Zeitschrift fuer Anorganische und Allgemeine Chemie 395(2-3), 223–38 (1973).Google Scholar
9 Kovnir, K.A., Shevelkov, A.V., Russian Chemical Reviews 73(9), 923938 (2004).Google Scholar
10 Shatruk, M.M., Kovnir, K.A., Lindsjoe, M., Presniakov, I.A., Kloo, L.A., Shevelkov, A.V., J. Solid State Chem. 161, 233242 (2001).Google Scholar
11 Zaikina, J.V., Schnelle, W., Kovnir, K.A., Olenev, A.V., Grin, Y., Shevelkov, A.V., Solid State Sciences 9(8), 664671 (2007).Google Scholar
12 Zaikina, J.V., Kovnir, K.A, Sobolev, A.V., Presniakov, I.A., Prots, Y., Baitinger, M., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Grin, Y., Shevelkov, A.V., Chemistry-A European Journal 13(18), 5090–9 (2007).10.1002/chem.200601772Google Scholar
13 Mudryk, Ya., Rogl, P., Paul, C., Berger, S., Bauer, E., Hilscher, G., Godart, C., Noel, H., J. Phys. Condens. Matter 14, 79918004 (2002).Google Scholar
14 Kovnir, K.A., Abramchuk, N.S., Zaikina, J.V., Baitinger, M., Burkhardt, U., Schnelle, W., Olenev, A.V., Lebedev, O.I., Tendeloo, G. Van, Dikarev, E.V., Shevelkov, A.V., Z. Kristallographie 221, 527532 (2006).Google Scholar
15 Zaikina, J.V., Kovnir, K.A., Schwarz, U., Borrmann, H., Shevelkov, A.V., Z. Kristallographie - New Crystal Structures 222(3), 177179 (2007).Google Scholar
16 Duenner, J., Mewis, A., Z. Anorg. Allg. Chemie 621, 191 (1995).Google Scholar
17 Carrillo-Cabrera, W., Budnyk, S., Prots, Y., Grin, Y., Z. Anorg. Allg. Chem. 630, 7226 (2004).Google Scholar
18 Kauzlarich, S.M., Ed. “Chemistry, Structure and Bonding of Zintl Phases and Ions”, Wiley-VCH, N.Y. (1996).Google Scholar
19 Kovnir, K.A., Sobolev, A.V., Presniakov, I.A., Lebedev, O.I., Tendeloo, G. Van, Schnelle, W., Grin, Y., Shevelkov, A.V., Inorganic Chemistry 44(24), 87868793 (2005).10.1021/ic051160kGoogle Scholar
20 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Popovkin, B.A., Zhurnal Neorganicheskoi Khimii 45(2), 203209 (2000).Google Scholar
21 Melnychenko-Koblyuk, N., Grytsiv, A., Berger, St., Kaldarar, H., Michor, H., Röhrbacher, F., Royanian, E., Bauer, E., Rogl, P., Schmid, H., Giester, G., J. Phys. Cond. Mat. 19, 046203-26, (2007).Google Scholar
22 Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R., TYPIX standardized data and crystal chemical characterization of inorganic structure types (Berlin: Springer) (1994).Google Scholar
23 Kovnir, K.A., Shatruk, M.M., Reshetova, L.N., Presniakov, I.A., Dikarev, E.V., Baitinger, M., Haarmann, F., Schnelle, W., Baenitz, M., Grin, Y., Shevelkov, A.V., Solid State Sciences 7(8), 957968 (2005).Google Scholar
24 Mott, N.F., Phil Mag. B19, 835 (1984); The Physics of Hydrogenated Amorphous Silicon Vol. II. ed. by J. D. Joannopoulos and G. Luckowsky, Topics in Applied Physics, 56(Springer, Berlin Heidelberg 1984), p. 169.Google Scholar
25 Melnychenko-Koblyuk, N., Grytsiv, A., Fornasari, L., Kaldarar, H., Michor, H., Röhrbacher, F., Koza, M., Royanian, E., Bauer, E., Rogl, P., Rotter, M., Schmid, H., Marabelli, F., Devishvili, A., Doerr, M., Giester, G., J. Phys. Cond. Mat. 19, 216223 1–26 (2007).Google Scholar
26 Callaway, J., Baeyer, H. C. von, Phys. Rev. 120, 1149 (1960).Google Scholar
27 Cahill, D., Pohl, R., Solid State Commun. 70, 927 (1989).Google Scholar
28 Snyder, G.J., Toberer, E.S., Nature Materials 7, 105114 (2008).Google Scholar
29 Rotter, M., Müller, H., Gratz, E., Doerr, M., Loewenhaupt, M., Rev. Sci. Instruments 69(7), 2742–45 (1998).Google Scholar
30 Kovnir, K.A., Zaikina, J.V., Reshetova, L.N., Olenev, A.V., Dikarev, E.V., Shevelkov, A.V., Inorganic Chemistry 43(10), 32303236 (2004).Google Scholar
31 Mukherjee, G.D., Bansal, C., Chatterjee, A., Phys. Rev. Lett. 76(11), 18761879 (1996).Google Scholar
32 Reny, E., Yamanaka, S., Cros, Ch., Pouchard, M., AIP Conference Proceedings 590 (Nanonetwork Materials), 499502 (2001).Google Scholar
33 Kishimoto, K., Koyanagi, T., Akai, K., Matsuura, M., Japanese Journal of Applied Physics Part 2: Letters & Express Letters 46(29-32), L746–L748 (2007).Google Scholar
34 Kishimoto, K., Akai, K., Muraoka, N., Koyanagi, T., Matsuura, M., Applied Physics Letters 89(17), 172106/1–172106/3 (2006).Google Scholar
35 Chu, T.L., Chu, S.S., Ray, R.L., Journal of Applied Physics 53(10), 7102–3 (1982).Google Scholar
36 Kishimoto, K., Arimura, S., Koyanagi, T., Applied Physics Letters 88(22), 222115/1–222115/3 (2006).10.1063/1.2209207Google Scholar
37 Jin, Z., Tang, Z., Litvinchuk, A., Guloy, A.M., Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, (2008).Google Scholar
38 Menke, H., Schnering, H.G. von, Zeitschrift Anorg. Allg. Chemie 424, 108 (1976).Google Scholar
39 Nesper, R., Curda, J., Schnering, H.G. von, Angew. Chemie 25, 369 (1986).Google Scholar
40 Shatruk, M.M., Kovnir, K.A., Shevelkov, A.V., Presniakov, I.A., Popovkin, B.A., Inorganic Chemistry 38(15), 34553457 (1999).Google Scholar
41 Deng, S., Tang, X., Li, P., Zhang, Q., Journal of Applied Physics 103, 073503 (2008).Google Scholar