Published online by Cambridge University Press: 21 February 2011
Recent calculations on (100) coincidence-site lattice (CSL) twist boundaries in the NaCl structure have shown that without point defects these boundaries are only marginally stable. Following an earlier suggestion that point defects are the likely source for the considerable stability of these boundaries observed experimentally for Mgo and NiO, Tasker and Duffy have shown recently that the creation of a Schottky pair can, indeed, stabilize a (100) twist boundary in NiO. In this article a variety of configurations in which one or more Schottky pairs have been created in the perfect CSL or anti-CSL unit cell are investigated. It is concluded that many metastable structures may exist which differ mainly with respect to their different interfacial mass densities and the relative translation of the two halves of the bicrystal.
Thiswork was supported by the U.S. Department of Energy.