Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:31:54.904Z Has data issue: false hasContentIssue false

On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation

Published online by Cambridge University Press:  21 February 2011

E.P. Gusev
Affiliation:
Department of Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08855. Department of Molecular Physics, Moscow Engineering Physics Institute, Kashirskoe shosse 31, Moscow 115409, Russia.
H.C. Lu
Affiliation:
Department of Physics, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08855.
T. Gustafsson
Affiliation:
Department of Physics, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08855.
E. Garfunkel
Affiliation:
Department of Chemistry, and Laboratory for Surface Modification, Rutgers University, Piscataway, NJ 08855.
Get access

Abstract

The growth of ultra-thin oxide films by the thermal oxidation of silicon has been studied by low and medium energy ion scattering spectroscopies (LEIS and MEIS) and X-ray photoelectron spectroscopy (XPS). To help elucidate the diffusional and mechanistic aspects of oxide growth we have used sequential isotope oxidation (18O2 followed by 16O2). LEIS demonstrates that both 18O and 16O atoms are on the silicon surface under our growth conditions. MEIS also distinguishes 18O from 16O and gives a depth distribution for both with high accuracy. Our results show that several key aspects of the Deal-Grove model (oxygen diffusion to the Si-SiO2 interface and oxide formation at the interface) are consistent with our results for 50Å films. For very thin oxide films (15Å or less), we found a mixed isotopic distribution in the film, demonstrating more complex oxidation behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Balt, P.. The Si-SiO2 System (North-Holland, Amsterdam, 1988).Google Scholar
2 Engel, T., Surf. Sci. Rept. 18,91 (1993).Google Scholar
3 Irene, E., CRC Crit. Rev. Sol. St. Mat. Sci. 14,175 (1988).Google Scholar
4 Lucovsky, G., Fitch, J. F., Kobeda, E., and Irene, E.. in The Physics and Chemistry of SiO2 and the Si-SiO2 interface (eds. Helms, C.R. and Deal, D.E.) p. 139 (Plenum Press, NY, 1988).CrossRefGoogle Scholar
5 Mott, N. F., Rigo, S., Rochet, F., and Stoneham, A. M., Phil. Mag. B 60,189 (1989).Google Scholar
6 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36,3770 (1965).CrossRefGoogle Scholar
7 According to some recent results this deviation may be caused by the limited accuracy of ellipsometry for thin silica films (Dutta, T. and Ravindra, N.M., Phys. Stat. Sol. A134, 447, 1992; S.C. Kao, and R.H. Doremus, in The Physics and Chemistry of SiO2 and Si-SiO2 Interface, C.R. Helms and B.E. Deal, eds., Plenum Press, N.Y., 1993, p.23).Google Scholar
8 Hoppers, M. A., Clarke, R. A., and Young, L., J. Electrochem. Soc. 122,1216 (1975).Google Scholar
9 Han, C. J. and Helms, C. R., J. Electrochem. Soc. 135,1824 (1988).Google Scholar
10 Delarious, J. M., Helms, C. R., Kao, D. B., and Deal, B. E., Appl. Surf. Sci. 39, 89 (1989).CrossRefGoogle Scholar
11 Revesz, A. G. and Hughes, H. L., J. Non-Cr. Solids 71, 87 (1985).Google Scholar
12 Irene, E. A., J. Appl. Phys. 54, 5416 (1983).Google Scholar
13 Kamohara, S. and Kamigaki, Y., J. Appl. Phys. 69, 7871 (1991).Google Scholar
14 Bjorkman, C. H., Fitch, J. T., and Lucovsky, G., Appl. Phys. Lett. 56, 1983 (1990).Google Scholar
15 Leroy, B., Phil. Mag. B 55, 159 (1987).CrossRefGoogle Scholar
16 Tamura, T., Tanaka, N., Tagawa, M., Ohmae, N., and Umeno, M., Jpn. J. Appl. Phys. 32, 12 (1993).CrossRefGoogle Scholar
17 Wolters, D. R. and Zegers-van Duynhoven, A. T. A., Appl. Surf. Sci. 39, 81 (1989).Google Scholar
18 Srivastava, J. K., Prasad, M., and Wagner, J. B. Jr, J. Electrochem. Soc. 132, 955 (1985).Google Scholar
19 Atkinson, A., Rev. Mod. Phys. 57, 437 (1985).Google Scholar
20 Massoud, H. Z., Plummer, J. D., and Irene, E. A., J. Electrochem. Soc. 132, 2693 (1985).Google Scholar
21 Ghez, R. and van der Meulen, Y. J., J. Electrochem. Soc 119, 1100 (1972).CrossRefGoogle Scholar
22 Moharir, S. S. and Chandorkar, A. N., J. Appl. Phys. 65, 2171 (1989).Google Scholar
23 Schafer, S. A. and Lyon, S. A., Appl. Phys. Lett. 47, 154 (1985).Google Scholar
24 Stoneham, A. M., Grovenor, C. R. M., and Cerezo, A., Phil. Mag. B 55, 201 (1987).CrossRefGoogle Scholar
25 Fouss, P. H., Norton, H. J., Brennan, S., and Fisher-Colbrie, A., Phys. Rev. Lett. 60, 600 (1988).Google Scholar
26 Ourmazd, A., Taylor, D. W., Rentscheir, J. A., and J. Bevk, Phys. Rev. Lett 59, 743 (1987).Google Scholar
27 Himpsel, F. J., Feely, F. R. M., Taleb-Ibrahimi, A., Yarmoff, J. A., and Hollinger, G., Phys. Rev. B 38, 6084 (1988).Google Scholar
28 Rochet, F., Rigo, S., Froment, M., d’Anterroches, C., Maillot, C., Roulet, H., and Dufour, G., Adv. Phys. 35, 339 (1986).Google Scholar
29 Costello, J. A. and Tressler, R. E., J. Electrochem. Soc. 131, 1944 (1984).Google Scholar
30 Cristy, S. S. and Condon, J. B., J. Electrochem. Soc. 128, 2170 (1981).CrossRefGoogle Scholar
31 Rochet, F., Agius, B., and Rigo, S., J. Electrochem. Soc. 131, 914 (1984).Google Scholar
32 Rosencher, E., Straboni, A., Rigo, S., and Amsel, G., Appl. Phys. Lett. 34, 254 (1979).Google Scholar
33 Trimaille, I. and Rigo, S., Appl. Surf. Sci. 39, 65 (1989).Google Scholar
34 Niehus, H., Heiland, W., and Taglauer, E., Surf. Sci. Rept. 17, (1992).Google Scholar