Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T14:55:28.742Z Has data issue: false hasContentIssue false

On The Influence of Nb on the Transition Temperatures of Titanium Aluminides

Published online by Cambridge University Press:  26 February 2011

Harald F. Chladil
Affiliation:
harald.chladil@unileoben.ac.at, Montanuniversity Leoben, Physical Metallurgy and Materials Testing, Franz-Josef Strasse 18, Leoben, 8700, Austria, +43 3842 402 4204, +43 3842 402 4202
Helmut Clemens
Affiliation:
helmut.clemens@unileoben.ac.at, Montanuniversity Leoben, Department of Physical Metallurgy and Materials Testing, Leoben, 8700, Austria
Masao Takeyama
Affiliation:
takeyama@mtl.titech.ac.jp, Tokyo Institute of Technology, Department of Metallurgy and Ceramics Science, Tokyo, 152-8552, Japan
Ernst Kozeschnik
Affiliation:
ernst.kozeschnik@iws.tugraz.at, Graz University of Technology, Institute for Materials Science, Welding and Forming, Graz, 8010, Austria
Arno Bartels
Affiliation:
bartels@tu-harburg.de, Technical University Hamburg-Harburg, Materials Science and Technology, Hamburg, 21073, Germany
Rainer Gerling
Affiliation:
rainer.gerling@gkss.de, GKSS Research Centre, Institute for Materials Research, Geesthacht, 21502, Germany
Sascha Kremmer
Affiliation:
skremmer@bstg.buag.co.at, Bohler Schmiedetechnik GmbH&CoKG, R&D, Kapfenberg, 8605, Austria
Get access

Abstract

Phase transformations and phase transition temperatures in several Ti-45Al and Ti-45Al-(5-10)Nb (at%) alloys were investigated experimentally and compared to thermodynamic calculation. The present study combines scanning electron microscopy, high-energy and conventional X-ray diffraction as well as differential scanning calorimetry for the characterization of the prevailing phases and phase transformations. Thermodynamic simulation based on the CALPHAD method was used to predict phase stabilities. Modifications of a commercial available database, based on the thermo-physical measurements and long-term annealing treatments, were introduced in order to achieve better agreement between calculated and experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Appel, F., Oehring, M., “γ-Titanium Aluminide Alloys: Alloy Design and Properties”, Titanium and Titanium Alloys, ed. Peters, C. and Leyens, M. (WILEY-VCH, 2003) pp. 89152.Google Scholar
[2] Kestler, H., Clemens, H., “Production, Processing and Application of γ-(TiAl)-Based Alloys”, Titanium and Titanium Alloys, ed. Peters, C. and Leyens, M. (WILEY-VCH, 2003), pp.351–392.Google Scholar
[3] Clemens, H., Kestler, H., Adv. Eng. Mater. 2, 551 (2000).Google Scholar
[4] Appel, F., Brossmann, U., Christoph, U., Eggert, S., Janschek, P., Lorenz, U., Müllauer, J., Oehring, M., and JDH. Paul, Adv. Eng. Mater. 2, 699 (2000)10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J3.0.CO;2-J>Google Scholar
[5] Clemens, H., Bartels, A., Bystrzanowski, S., Chladil, H.F., Leitner, H., Dehm, G., Gerling, R., Schimansky, F.P., Intermetallics 14, 1380 (2006).Google Scholar
[6] Saunders, N., in Gamma Titanium Aluminides 1999, edited by Kim, Y-W., Dimiduk, D.M. and Loretto, M.H. (TMS, Warrendale PA, 1999), p. 183.Google Scholar
[7] Beschliesser, M., Clemens, H., Kestler, H. and Jeglitsch, F., Scripta Materialia 49, 279 (2003).Google Scholar
[8] Malinov, S., Novoselova, T., and Sha, W., Mat. Sci. and Eng. A386, 344 (2004).10.1016/S0921-5093(04)00985-2Google Scholar
[9] Appel, F., Oehring, M. and Wagner, R., Intermetallics 8, 1283 (2000).10.1016/S0966-9795(00)00036-4Google Scholar
[10] Chladil, H.F., Clemens, H., Leitner, H., Bartels, A., Gerling, R., Schimansky, F.P., Kremmer, S., Intermetallics 14, 1194 (2006).10.1016/j.intermet.2005.11.016Google Scholar
[11] Chladil, H.F., Clemens, H., Leitner, H., Bartels, A., Marketz, W.T., Adv. Eng. Mater. 7, 1131 (2005).10.1002/adem.200500153Google Scholar
[12] Gerling, R., Clemens, H., Schimansky, F.P., Adv. Eng. Mater. 6, 23 (2004).10.1002/adem.200310559Google Scholar
[13] Sundman, B., Jansson, B., and Andersson, J.-O., CALPHAD 9, 153 (1985).Google Scholar
[14] Kozeschnik, E. and Buchmayr, B., “Mathematical Modelling of Weld Phenomena 5”,edited by Cerjak, H. and Bhadeshia, H.K.D.H. (IOM, London 2001), p. 349.Google Scholar
[15] Ansara, I., Int. Met. Reviews 22, 20 (1979).Google Scholar
[16] Saunders, N. and Miodownik, A.P., CALPHAD-A Comprehensive Guide (Elsevier Science, New York, 1998).Google Scholar
[17] K.-D Liss, Bartels, A., Clemens, H., Bystrzanowski, S., Stark, A., Buslaps, T.,Schimansky, F.P., Gerling, R., Scheu, C., Schreyer, A., Acta Materialia 54, 3721 (2006).Google Scholar
[18] Takeyama, M., Ohmura, Y., Kikuchi, M., Matsuo, T., Intermetallics 6, 643646 (1998)10.1016/S0966-9795(98)00049-1Google Scholar
[19] Takeyama, M., Kobayashi, S., Intermetallics 13, 993(2005).10.1016/j.intermet.2004.12.014Google Scholar
[20] Takeyama, M., Kikuchi, M., Mater Jpn 35, 1058 (1996).Google Scholar