Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:04:29.746Z Has data issue: false hasContentIssue false

On the carbo-thermal reduction of silica for carbon nano-fibre formation via CVD

Published online by Cambridge University Press:  23 March 2011

Alicja Bachmatiuk
Affiliation:
IFW Dresden, P.O. Box 270116, 01069 Dresden, Germany
Felix Börrnert
Affiliation:
IFW Dresden, P.O. Box 270116, 01069 Dresden, Germany
Imad Ibrahim
Affiliation:
IFW Dresden, P.O. Box 270116, 01069 Dresden, Germany
Bernd Büchner
Affiliation:
IFW Dresden, P.O. Box 270116, 01069 Dresden, Germany
Mark H. Rümmeli
Affiliation:
IFW Dresden, P.O. Box 270116, 01069 Dresden, Germany Technische Universität Dresden, 01062 Dresden, Germany
Get access

Abstract

The formation of carbon nanostructures using silica nanoparticles from quartz substrates as a catalyst in an aerosol assisted chemical vapor deposition process was examined. The silica particles are reduced to silicon carbide via a carbothermal reduction process. The recyclability of the explored quartz substrates is also presented. The addition of triethyl borate improves the efficiency of the carbothermal reduction process and carbon nanotubes formation. Moreover, the addition of hydrogen during the chemical vapor deposition leads to the helical carbon nanostructures formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baker, T., Chem Ind (Lond) 18, 698 (1982).Google Scholar
2. Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y., Nano Letters 8, 2082 (2008).Google Scholar
3. Costa, S., Borowiak-Palen, E., Bachmatiuk, A., Rümmeli, M. H., Gemming, T., Kalenczuk, R. J., Phys Status Solidi B 244, 4315 (2007).Google Scholar
4. Bachmatiuk, A., Borowiak-Palen, E., Rümmeli, M. H., Gemming, T., Kalenczuk, R. J., Phys Status Solidi B 244, 3925, (2007).Google Scholar
5. Carneiro, O. C., Kim, M. S., Yim, J. B., Rodriguez, N. M., K Baker, R. T., Journal of Physical Chemistry B 107, 4237 (2004).Google Scholar
6. Rümmeli, M. H., Schäffel, F., Bachmatiuk, A., Adebimpe, D., Trotter, G., Börrnert, F., ACS Nano 4, 1146 (2010).Google Scholar
7. Bachmatiuk, A., Borowiak-Palen, E., Rümmeli, M. H., Kramberger, C., Hübers, H-. W., Gemming, T., Nanotechnology 18, 275610 (2007).Google Scholar
8. Bachmatiuk, A., Borowiak-Palen, E., Kalenczuk, R. J., Nanotechnology, 19, 365605 (2008).Google Scholar
9. Bachmatiuk, A., Börrnert, F., Grobosch, M., Schäffel, F., Wolff, U., Scott, A., Zaka, M., Warner, J. H., Klingeler, R., Knupfer, M., Büchner, B., Rümmeli, M. H., ACS Nano, 3, 4098 (2009).Google Scholar
10. Bachmatiuk, A., Börrnert, F., Schäffel, F., Zaka, M., Simha Martynkowa, G., Placha, D., Schonfelder, R., Costa, P. M. F. J., Ioannides, N., Warner, J. H., Klingeler, R., Büchner, B., Rümmeli, M. H., Carbon, 48, 3175 (2010).Google Scholar
11. Rümmeli, M. H., Bachmatiuk, A., Scott, A., Börrnert, F., Warner, J. H., Hoffmann, V., Lin, J. H., Cuniberti, G. and Büchner, B., ACS Nano 4, 4206 (2010).Google Scholar
12. Steiner, S. A. III, Baumann, T. F., Bayer, B. C., Blume, R., Worsley, M. A., MoberlyChan, W. J., Shaw, E. L., Schlögl, R., Hart, A. J., Hofmann, S. and Wardle, B. L., Journal of the American Chemical Society 131, 12144 (2009).Google Scholar
13. Takagi, D., Hibino, H., Suzuki, S., Kobayashi, Y., Y. Homma Nano Letters 7, 2272 (2007).Google Scholar
14. Takagi, D., Kobayashi, Y., Homma, Y., Carbon, Y. nanotube growth from diamond. Journal of the American Chemical Society 131, 6922 (2009).Google Scholar
15. Liu, B., Ren, W., Gao, L., Li, S., Pei, S., Liu, C., et al. . Metal-catalyst-free growth of single-walled carbon nanotubes. Journal of the American Chemical Society 131, 2082 (2009).Google Scholar
16. Rümmeli, M. H., Borowiak-Palen, E., Gemming, T., Pichler, T., Knupfer, M., Kalbac, M., Nano Letters 5, 1209 (2005).Google Scholar
17. Rümmeli, M. H., Kramberger, C., Grüneis, A., Ayala, P., Gemming, T., Büchner B, B., Chemistry of Materials, 19, 4105 (2007).Google Scholar
18. Huang, S., Cai, Q., Chen, J., Qian, Y., Zhang, L., Journal of the American Chemical Society 131, 2094 (2009).Google Scholar
19. Hirsch, A., Angewandte Chemie International Edition, 48, 5403 (2009).Google Scholar
20. Liu, H., Takagi, D., Chiashi, S., Homma, Y., Carbon 48, 114 (2010).Google Scholar
21. Hlavac, J., Glass science and technology, the technology of glass and ceramics, 12 Elsevier: Czechoslovakia; (1983).Google Scholar
22. Sun, Y., Miyasato, T., Japanese Journal of Applied Physics 37, 5485 (1998).Google Scholar
23. Weimer, A. W., Nilsen, K. J., Couchran, G. A., Roach, R. P., AIChE Journal, 39, 493 (1993).Google Scholar
24. Vix-Guterl, C., Alix, I., Gibot, P., Ehrburger, P., Applied Surface Science, 210, 329 (2003).Google Scholar
25. Bachmatiuk, A., Börrnert, F., Hoffmann, V., Lindackers, D., Lin, J-H., Büchner, B., Rümmeli, M. H., European Journal of Chemistry, submitted.Google Scholar