Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:55:03.423Z Has data issue: false hasContentIssue false

Oligoaniline crystals: morphology control, hierarchical assembly and structure-property relationships

Published online by Cambridge University Press:  14 February 2012

Yue Wang
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles and the California NanoSystems Institute, Los Angeles, CA 90095-1569, U.S.A.
Henry D. Tran
Affiliation:
Fibron Technologies, Inc. Inglewood, CA 90301-1501, U.S.A
Jinglin Liu
Affiliation:
Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716-1501, U.S.A.
David C. Martin
Affiliation:
Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716-1501, U.S.A.
Richard B. Kaner
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles and the California NanoSystems Institute, Los Angeles, CA 90095-1569, U.S.A.
Get access

Abstract

Short-chain oligomers of aniline are attractive semi-metallic materials for applications as organic electrodes or hole-transporting layers in organic photovoltaics. However, conventionally processed oligoanilines are often amorphous, which limits their conductivities and carrier transport mobilities. Here, we report a simple solvent-exchange method that can render a variety of oligoanilines and their derivatives into crystals of different shapes and dimensions, including 1-D fibers and wires, 2-D ribbons, and 3-D plates, hollow spheres, porous sheets, and flower-like structures. Dopant ions are also simultaneously incorporated into the crystals during self-assembly, allowing them to become conducting. Mechanistic studies suggest that the higher order crystals arise from the most primitive nanofibrillar morphology via hierarchical assembly, providing insights into a general approach to control organic crystal morphologies. Selected area electron diffraction studies reveal their single crystalline nature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lim, J. A.; Liu, F.; Ferdous, S.; Muthukumar, M; Briseno, A. L. Mater. Today 13, 14 (2010).Google Scholar
2. Briseno, A. L.; Mannsfeld, S. C. B.; Jenekhe, S. A.; Bao, Z.; Xia, Y. N. Mater. Today 11, 38 (2008).Google Scholar
3. Bredas, J. L.; Street, G. B. Acc. Chem. Res. 18, 309 (1985).Google Scholar
4. Shacklette, L. W.; Wolf, J. F.; Gould, S.; Baughman, R. H., J. Chem. Phys. 88, 3955 (1988).Google Scholar
5. Baughman, R. H.; Wolf, J. F.; Eckhardt, H.; Shacklette, L. W., Synth. Met. 25, 121 (1988).Google Scholar
6. Zhou, Y.; Geng, J.; Li, G.; Zhou, E.; Chen, L.; Zhang, W., J. Polym. Sci. Part B: Polym. Phys. 44, 764 (2006).Google Scholar
7. MacDiarmid, A. G.; Zhou, Y.; Feng, J., Synth. Met. 100, 131 (1999).Google Scholar
8. Lu, F. L.; Wudl, F.; Nowak, M; Heeger, A. J., J. Am. Chem. Soc. 108, 26, 8311 (1986).Google Scholar
9. Wang, Y.; Tran, H. D.; Liao, L.; Duan, X.; Kaner, R. B., J. Am. Chem. Soc. 132, 10365 (2010).Google Scholar
10. Viculis, L. M.; Mack, J. J.; Kaner, R. B., Science 299, 1361 (2003).Google Scholar
11. Pashuck, E. T.; Stupp, S. I., J. Am. Chem. Soc. 132, 26, 8819 (2010).Google Scholar
12. Ziserman, L.; Lee, H.-Y.; Raghavan, S. R.; Mor, A.; Danino, D., J. Am. Chem. Soc. 133, 8, 2511 (2011).Google Scholar
13. Wei, Z. X.; Faul, C. F. J., Macromol. Rapid Commun. 29, 280 (2008).Google Scholar