Published online by Cambridge University Press: 26 February 2011
In a thick strained GaAs/InGaAs MQW we recently reported the unusual observation of the exciton linewidth initially narrowing upon application of a reverse bias, before the usually observed broadening set in with further increase in the bias. The phenomena suggested the existence of a spatially varying electric field in the MQW region arising from a depletion of the net charge density with increasing reverse bias. Here we provide an explanation for the unusual observation arrived at through a systematic examination of the sample behavior using electro-transmission, electro-photoluminescence, capacitancevoltage profiling and transmission electron microscopy. We conclude that shallow levels cannot account for the observation and that the presence of strain induced point defect related deep levels (either n of p type) offers a consistent explanation. This is the first clear manifestation of the influence of deep levels on the free exciton electroabsorption behavior and has practical implications for MQW based electroabsorptive / electrorefractive light modulators.