Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:12:14.411Z Has data issue: false hasContentIssue false

Numerical Transfer-Matrix Study Of Interfaces In Ising Models

Published online by Cambridge University Press:  21 February 2011

M. A. Novotny
Affiliation:
Supercomputer Computations Research Institute, B-186, Florida State University, Tallahassee, Florida 32306
H. L. Richards
Affiliation:
Supercomputer Computations Research Institute, B-186, Florida State University, Tallahassee, Florida 32306 Physics Department and Center for Materials Research and Technology, B-159, Florida State University, Tallahassee, Florida 32306
P. A. Rikvold
Affiliation:
Supercomputer Computations Research Institute, B-186, Florida State University, Tallahassee, Florida 32306 Physics Department and Center for Materials Research and Technology, B-159, Florida State University, Tallahassee, Florida 32306 Tohwa Institute for Science, Tohwa University, Fukuoka 815, Japan Department of Physics, Kyushu University, 33, Fukuoka 812, Japan
Get access

Abstract

Results are reported for the surface tension, the surface free energy, the surface stiffness coefficient, and the single-step free energy for the Ising model in two and three dimensions. These are obtained by numerical transfer-matrix calculations, testing detailed predictions for the scaling of the largest eigenvalues of the transfer-matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For reviews see Binder, K. in Phase Transitions and Critical Phenomena, Vol. 8, ed. Domb, C. and Lebowitz, J. L. (Academic, New York, 1983);Google Scholar
Gelfand, M. P. and Fisher, M. E., Physica A 166, 1 (1990);CrossRefGoogle Scholar
Jasnow, D. in Phase Transitions and Critical Phenomena, Vol. 10, ed. Domb, C. and Lebowitz, J. L. (Academic, New York, 1986).Google Scholar
[2] Shaw, L. J. and Fisher, M. E., Phys. Rev. A 39, 2189 (1989).Google Scholar
[3] Mon, K. K., Wansleben, S., Landau, D. P., and Binder, K., Phys. Rev. Lett. 60, 708 (1988)CrossRefGoogle Scholar
[4] Mon, K. K., Wansleben, S., Landau, D. P., and Binder, K., Phys. Rev. B 39, 7089 (1989).Google Scholar
[5] Mon, K.K., Landau, D. P., and Stauffer, D., Phys. Rev. B 42, 545 (1990).Google Scholar
[6] Meyer-Ortmanns, H. and Trappenberg, T., J. Stat. Phys. 58, 185 (1990).Google Scholar
[7] Münster, G., Nucl. Phys. 324, 630 (1989).CrossRefGoogle Scholar
[8] Ueno, Y., Sun, G., and Ono, I., J. Phys. Soc. Jap. 58, 1162 (1989).CrossRefGoogle Scholar
[9] Sun, G. and Ueno, Y., Z. Phys. B 82, 425 (1991).CrossRefGoogle Scholar
[10] Privman, V. and Švrakić, N. M., Phys. Rev. Lett. 62, 633 (1989).CrossRefGoogle Scholar
[11] Privman, V. and Švrakić, N. M, J. Stat. Phys. 54, 735 (1989).Google Scholar
[12] Abraham, D. B. L. F., Ko, and Švrakić, N. M., J. Stat. Phys. 56, 563 (1989).Google Scholar
[13] Abraham, D. B., Švrakić, N. M., and Upton, P. J., preprint HLRZ 69/91.Google Scholar
[14] Selke, W., Švrakić, N. M., and Upton, P. J., preprint HLRZ 64/91.Google Scholar
[15] Fisher, M. P. A., Fisher, D. S., and Weeks, J. D., Phys. Rev. Lett. 48, 368 (1982).Google Scholar
[16] Kramers, H. A. and Montroll, G. H., Phys. Rev. 60, 252 (1941).CrossRefGoogle Scholar
[17] Camp, W. J. and Fisher, M. E., Phys. Rev. 6, 946 (1972).Google Scholar
[18] Statistical Mechanics, Huang, K., p. 352, (Wiley, New York, 1963).Google Scholar
[19] Novotný, M. A., J. Math. Phys. 29, 2280 (1988).Google Scholar
[20] Nightingale, M. P. in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. Privman, V., (World Scientific, Singapore, 1990).Google Scholar
[21] Novotný, M. A., Richards, H. L., and Rikvold, P. A., unpublished.Google Scholar
[22] Abraham, D. B., Gallavotti, G., and Martin-Löff, A., Physica 65, 73 (1973).Google Scholar
[23] Fisher, M. E. and Ferdinand, A. E., Phys. Rev. Lett. 19, 169 (1967).Google Scholar
[24] Ferrenberg, A. M. and Landau, D. P., Phys. Rev. 44, 5081 (1991).Google Scholar