Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:44:20.220Z Has data issue: false hasContentIssue false

Nucleation of the electroactive phase of poly(vinylidene fluoride) by ferrite nanoparticles: surface versus size effects

Published online by Cambridge University Press:  28 January 2011

P. Martins
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
C. M. Costa
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
M. Benelmekki
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
S. Lanceros-Mendez
Affiliation:
Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
Get access

Abstract

Multiferroics and magnetoelectric materials show interesting scientific challenges and technnologial applications in sensors, acuators and data storage. In view of the fact that only a small number of materials show this kind of properties, exhaustive research activity is being pursued towards the development of new composite materials. Multiferroic nanocomposites films composed of piezoelectric poly(vinylidene fluoride) (PVDF) and magnetostrictive nanosize CoFe2O4, NiFe2O4 or NiZnFe2O4 ferrites were prepared by a solution method. Those ferrite nanoparticles have the ability to nucleate the electroactive β-phase of the polymer, providing in this way an easy route for the preparation of magnetoelectric particulate composites. The fact that the different nanoparticles promotes different amount of β-phase nucleation for different concentrations of nanoparticles indicates that filler size is not the most important parameter determining phase nucleation but the filler-matrix surface interaction. Further, when the polymer-ferrite surface interaction is modified through surfactation, the electroactive phase is not nucleated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mathur, N. D. et al. , Multiferroic and magnetoelectric materials . Nature, 2006. 442(7104): p. 759765.Google Scholar
2. Spaldin, N. et al. , T he renaissance of magnetoelectric multiferroics . Science. 2005. 309(573): p. 391392.Google Scholar
3. Rado, G. et al. , Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains . Physical Review Letters, 1961. 7(8): p. 310311.Google Scholar
4. Nan, C., et al. , Multiferroic magnetoelectric composites: Historical perspective, status, and future directions . Journal of Applied Physics, 2008. 103(3): p. 135.Google Scholar
5. Guo, Y. et al. , Giant Magnetodielectric Effect in 0-3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) Nanocomposite Films . Journal of Physical Chemistry C, 2010. 114(32): p. 1386113866 .Google Scholar
6. Li, Y. et al. , Magnetoelectric effect of Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composites . Journal of the European Ceramic Society, 2006. 26(13): p. 28392844.Google Scholar
7. Mitoseriu, L. et al. , BaTiO3-(Ni0.5Zn0.5)Fe2O4 ceramic composites with ferroelectric and magnetic properties . Journal of the European Ceramic Society, 2007. 27(13–15): p. 43794382.Google Scholar
8. Martins, P. et al. , Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites . Applied Physics A, Materials Science & Processing, 2010. DOI: 10.1007/s00339-010-6003-7.Google Scholar
9. Zhang, Z. et al. , The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0-3 nanocomposites . Journal of Applied Physics, 2009. 105(5): p. 16.Google Scholar
10. Fukada, E. et al. , History and recent progress in piezoelectric polymers . IEEE Transactions on ultrasonics ferroelectrics and frequency control, 2000. 47(6) p. 12771290.Google Scholar
11. Branciforti, M. et al. , New Technique of Processing Highly Oriented Poly(vinylidene fluoride) Films Exclusively in the β Phase . Journal of polymer science Part B-Polymer Physics, 2007. 45(19): p. 27932801.Google Scholar
12. Martins, P. et al. , Local variation of the dielectric properties of poly(vinylidene fluoride) during the alpha- to beta-phase transformation . Physics Letters A, 2009. 373(2): p. 177180.Google Scholar
13. Campelj, S. et al. , P reparation and properties of water-based magnetic fluids . Journal of Physics: Condensed Matter, 2008. 20(20): p. 15.Google Scholar
14. Kobayashi, M et al. , Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride) . Macromolecules, 1975. 8(2): p. 158171.Google Scholar
15. Miranda, D. et al. , Influence of Silver Nanoparticles Concentration on the alpha- to beta-Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites . Journal of nanoscience and nanotechnology, 2009. 9(5): p. 29102916.Google Scholar
16. Botelho, G. et al. , Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. Journal of non-crystalline solids , 2008, 354(1): p. 7278.Google Scholar
17. Andrew, J. et al. , Enhanced Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers with the Addition of Magnetic Nanoparticles . Langmuir, 2008. 24(16): 84358438.Google Scholar