Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:32:12.291Z Has data issue: false hasContentIssue false

Nucleation of (Mo) Precipitates on Dislocations During Annealing of a Mo-rich Mo5SiB2 Phase

Published online by Cambridge University Press:  26 February 2011

Nobuaki Sekido
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509, University Ave, Madison, WI 53706, USA
Ridwan Sakidja
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509, University Ave, Madison, WI 53706, USA
John H. Perepezko
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509, University Ave, Madison, WI 53706, USA
Get access

Abstract

Upon annealing an as-cast Mo-10Si-20B alloy at high temperatures, a Mo solid solution phase precipitates within a supersaturated Mo5SiB2 phase. The precipitation behavior of the Mo solid solution was investigated by means of transmission electron microscopy and X-ray diffractometry. It is found that the Mo5SiB2 phase in a Mo-10Si-20B alloy contains a significant amount of structural vacancies in the as-cast state. The excess vacancies are removed to form dislocations during annealing, which provides the heterogeneous nucleation sites for the (Mo) precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Petrovic, J.J., and Honnell, R.E., Ceram. Eng. Sci. Proc., 11, 734 (1990).Google Scholar
2. Vasudevan, A.K. and Petrovic, J.J., Mater. Sci. Eng., A155, 1 (1992).Google Scholar
3. Petrovic, J.J. and Vasudevan, A.K., Mater. Sci. Eng., A261, 1 (1999).Google Scholar
4. Dimiduk, D.M. and Perepezko, J.H., MRS Bulletin, 28, 639 (2003).Google Scholar
5. Thom, A.J., Meyer, M.K., Akinc, M., and Kim, Y., Processing and Fabrication of Advanced Materials for High Temperature Applications III (TMS, Warrendale, PA, 1993), 413.Google Scholar
6. Meyer, M.K., and Akinc, M., J. Am. Ceram. Soc., 79, 938 (1996).Google Scholar
7. Meyer, M.K., and Akinc, M., J. Am. Ceram. Soc., 79, 2763 (1996).Google Scholar
8. Nunes, C.A., Sakidja, R., and Perepezko, J.H., Structural intermetallics (TMS, Warrendale, PA, 1997), 831.Google Scholar
9. Katrych, S., Grytsiv, A., Bondar, A., Rogl, P., Velikanova, T., and Bohn, T., J. Alloys Comp., 347, 94 (2002).Google Scholar
10. Kramer, M.J., Unal, O., and Wright, R.N., Intermetallics, 9, 25 (2001).Google Scholar
11. Schneibel, J.H., Kramer, M.J., and Easton, D.S., Scripta Mater., 46, 217 (2002).Google Scholar
12. Berczik, D.M., United States Patent, 5, 693, 156 (1997).Google Scholar
13. Schneibel, J.H., Liu, C.T., Heatherly, L., and Kramer, M.J., Scripta Mater., 38, 1169 (1998).Google Scholar
14. Schneibel, J.H., Liu, C.T., Carmichael, C.A., and Easton, D.S., Mater. Sci. Eng., A261(1–2), 78 (1999).Google Scholar
15. Sakidja, R., Sieber, H., and Perepezko, J.H., Phil. Mag. Lett., 79, 351 (1999).Google Scholar
16. Cullity, B.D. and Stock, S.R., “Elements of X-ray Diffraction, 3rd Edition” (Prentice-Hall, 2001).Google Scholar
17. Ishida, Y., Ishida, H., Kohra, K., and Ichinose, H., Phil. Mag., 42A, 453 (1980).Google Scholar
18. Nowotny, H., Dimakopoulou, E., and Kudielka, H., Monatsh Chem., 88, 180 (1957).Google Scholar
19. Sakidja, R., Myers, J., Kim, S., and Perepezko, J.H., Int. J. Refract. Metals Hard Mater., 18, 193 (2000).Google Scholar
20.Smithells Metals Reference Book, 6th Edition”, Ed. Brandes, Eric A (Butterworth, London, 1983).Google Scholar
21. Porter, D.A. and Easterling, K.E., “Phase Transformation in Metals and Alloys, 2nd Edition” (Chapman&Hall, 1992).Google Scholar
22. Cahn, J.W., Acta Metall., 5, 169 (1957).Google Scholar
23. Kelly, A. and Nicholson, R.B., Prog. Mater. Sci., 10, 151 (1963).Google Scholar