Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:57:40.403Z Has data issue: false hasContentIssue false

Nucleation and Growth of Supported Metal Clusters at Defect Sites on Mgo and NaCl (001) Surfaces: The Cases of Pd and Ag

Published online by Cambridge University Press:  10 February 2011

J. A. Venables
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe AZ 85287-1504, and School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK
G. Haas
Affiliation:
Institut de Physique Experimental, EPFL, CH 1015 Lausanne, Switzerland
H. Brune
Affiliation:
Institut de Physique Experimental, EPFL, CH 1015 Lausanne, Switzerland
J.H. Harding
Affiliation:
Department of Physics and Astronomy, University College, Gower Street, London, UK
Get access

Abstract

Nucleation and growth of metal clusters at defect sites is discussed in terms of rate equation models, which are applied to the cases of Pd and Ag on MgO(001) and NaCl(001) surfaces. Pd/MgO has been studied experimentally by variable temperature atomic force microscopy (AFM). The island density of Pd on Ar-cleaved surfaces was determined in-situ by AFM for a wide range of deposition temperature and flux, and stays constant over a remarkably wide range of parameters; for a particular flux, this plateau extends from 200 K ≤ T ≤ 600 K, but at higher temperatures the density decreases. The range of energies for defect trapping, adsorption, surface diffusion and pair binding are deduced, and compared with earlier data for Ag on NaCl, and with recent calculations for these metals on both NaCl and MgO

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Campbell, C.T., Surface Sci. Rep. 27, 1 (1997); C.R. Henry, ibid31, 231 (1998).Google Scholar
2. Harsdorff, M., Thin Solid Films 90, 1 (1982); ibid 116, 55 (1984); J.L. Robins, Appl. Surf. Sci. 33/34, 379 (1988); A.D. Gates and J.L. Robins, Surf. Sci. 191, 499 (1987).Google Scholar
3. Chapon, C., Henry, C.R. and Chenam, A., Surface Sci. 162, 747; M. Meunier and C.R. Henry, ibid 307–309, 514 (1994); C.R. Henry and M. Meunier, Vacuum 50, 157 (1998).Google Scholar
4. Brune, H., Röder, H., Baragno, C. and Kern, K., Phys. Rev. Lett. 73, 1955 (1994); H. Brune, Surface Sci. Rep. 31, 121 (1998); see also chapters by Venables, Brune and Kern in Growth and properties of ultrathin epitaxial layers, edited by D.A. King and D.P. Woodruff (The chemical physics of solid surfaces and heterogeneous catalysis vol 8, Elsevier, 1997).Google Scholar
5. Haas, G., Menck, A., Brune, H., Barth, J.V., Venables, J.A., and Kern, K. (1999) submitted for publication.Google Scholar
6. Venables, J.A., Mater. Res. Soc. Proc. 440, 129 (1997); Physica A239, 35 (1997); Chapter 1 of Heteroepitaxy: thinfilm systems, edited by W.K. Liu and M.B. Santos (World Scientific, 1999).Google Scholar
7. Harding, J.H., Stoneham, A.M. and Venables, J.A., Phys. Rev. B57, 6715 (1998) and to be published.Google Scholar
8. Didier, F. and Jupille, J., Surface Sci. 307–309, 587 (1994); A.M. Flank, R. Delauney, P. Lagarde, M. Pompa and J. Jupille, Phys. Rev. B53, R1737 (1996).Google Scholar
9. Venables, J.A., Phil. Mag. 27, 697 (1973); Phys. Rev. B36, 4153 (1987); for a review see Surface Sci. 299/300, 798 (1994) or refs 4.Google Scholar
10. Heim, K.R., Coyle, S.T., Hembree, G.G., Venables, J.A. and Scheinfein, M.R., J. Appl. Phys. 80, 1161 (1996).Google Scholar
11. Sangster, M.J.L. and Stoneham, A.M., Philos. Mag. B43, 597 (1981).Google Scholar
12. Pyper, N.C. and Wood, C.P., Philos. Trans. Roy. Soc. A320, 71 (1986).Google Scholar
13. Radzig, A.A. and Smirnov, B.M., Reference Data on Atoms, Molecules and Ions(Springer-Verlag, 1985).Google Scholar
14. Johnson, W.R., Kolb, D. and Huang, K.N., Atomic Data and Nuclear Data Tables 28, 333 (1983).Google Scholar
15. Beute, V., Kramer, H.G., Kuhn, M., Weyers, W. and Demtroides, W., J. Chem. Phys. 98, 2699 (1993).Google Scholar
16. Balasubramanian, K., J. Chem. Phys. 89, 6310 (1988).Google Scholar
17. Tasker, P.W., Philos. Mag. A 39, 119 (1979).Google Scholar
18. Tasker, P.W. and Duffy, D.M., Report No. AERE-1 1059 (1983).Google Scholar
19. Yudanov, I.V., Vent, S., Pacchioni, G., Neyman, K. and Rösch, N., Chem. Phys. Lett. 275, 245 (1997); K.M. Neyman, S. Vent, G. Pacchioni and N. Rosch, Nuovo Cimento 19D, 1743 (1997);Google Scholar
20. Spiess, L., Surface Rev. Lett. 3, 1365 (1996).Google Scholar
21. Duriez, C., Chapon, C., Henry, C.R. and Rickard, J.M., Surf Sci. 230, 123 (1990).Google Scholar
22. Ferrari, A.M. and Pacchioni, G., J. Phys. Chem. 100, 9032 (1996).Google Scholar
23. Stirling, A., Gunji, I., Endou, A., Oumi, Y., Kubo, M. and Miyamoto, A., J. Chem. Soc. Faraday Transactions 93, 1175 (1997); N. López and F. Illas, J. Phys. Chem. B 102, 1430 (1998).Google Scholar
24. Shim, I. and Gingerich, K.A., J. Chem. Phys. 80, 5107 (1984); M.D. Morse, Chem. Rev. 86, 1049 (1986); M. Harada and H. Dexpert, J. Phys. Chem. 100, 565 (1996); G. Valerio and H. Toulhoat, J. Phys. Chem. 100, 10827 (1996); J.M. Seminario, A.G. Zacarias and M. Castro, Int. J. Quant. Chem. 61, 515 (1997).Google Scholar