Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T12:56:03.634Z Has data issue: false hasContentIssue false

Nucleation and Growth of Quasicrystalline Silicon Thin Films on Glass Substrate Synthesized by Ceramics Hot Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Abdul Rafik Middya
Affiliation:
rafikmiddya@netzero.net, Syracuse University, Department of Physics, 501 1/2 Nottingham Road, Syracuse, New York, 13210, United States, (315) 469-5975, (315) 469-5975
Jian-Jun Liang
Affiliation:
jjliang@physics.syr.edu, Syracuse University, Department of Physics, 201 Physics Building, Syracuse, New York, 13244-1130, United States
Kartik Ghosh
Affiliation:
kartikghosh@missouristate.edu, Missouri State University, Physics, Astronomy and Materials Science, 901 S. National Avenue, Springfield, Missouri, 65804, United States
Get access

Abstract

In this work, we report on nucleation and growth of silicon thin films on glass substrate with “five-fold” symmetry and “six-fold” symmetry by ceramics hot wire chemical vapor deposition. We observed “confinement of heat and photon” is a powerful approach in developing silicon thin films with novel structure, i.e. quasicrystalline silicon thin films on glass substrate. We found unambiguously that photons emitted from the hot filament influence the nucleation of nanocrystal silicon that produces new type of silicon thin films with “five-fold” symmetry and “six-fold” symmetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., Balberg, I., J. Appl. Phys. 69 (1991) 6728.Google Scholar
2. Middya, A. R., Guillet, J., Brenot, R., Perrin, J., Bouree, J. E., Longeaud, C. and Kleider, J. P., Mat. Res. Soc. Symp. Proc. Vol. 467 (1997) p. 271.Google Scholar
3. Weber, U., Middya, A. R., Mukherjee, C. and Schroeder, B., Proceedings of the 28th IEEE Photovoltaic Specialist Conference-2000, Anchorage, AK, p. 908.Google Scholar
4. Ray, S., Middya, A. R. and Barua, A. K., Jpn. J. Appl. Phys. 32 Part 2 (Letters) (1993) L1559.Google Scholar
5. Middya, A. R., Liang, J-J. and Ghosh, K., Mat. Res. Symp. Proc. Vol.862 (2005) p.183.Google Scholar
6. Penrose, , U.S. Patent 4133152, 1979.Google Scholar
7. Zandi, R., Reguera, D., Bruinams, R. F., Gelbert, W. M. and Rudnick, J., Proc. National Academy of Science, USA 101 (44), 15556 (2004).Google Scholar
8. Tsai, P., Inoue, A. and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).Google Scholar
9. Zhao, Y., Kim, Y-H., Du, M-H. and Zhang, S.B., Phys. Rev. Letts. 93, 015502–1 (2004).Google Scholar
10. Middya, A. R., Liang, J-J. and Ghosh, K., J. Non-Crystalline Solids (2006) (in press).Google Scholar
11. Concari, S. B. and Buitrago, R. H., Semiconductor Science and Technology 18, 864 (2003).Google Scholar