Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:34:01.222Z Has data issue: false hasContentIssue false

Nuclear spin polarization by out-of-plane spin injection from ferromagnet into an InAs heterostructure

Published online by Cambridge University Press:  18 May 2012

Tomotsugu Ishikura
Affiliation:
Research Center of Integrated Quantum Electronics, Hokkaido University, Sapporo, Japan
Takahiro Hiraki
Affiliation:
Research Center of Integrated Quantum Electronics, Hokkaido University, Sapporo, Japan
Takashi Matsuda
Affiliation:
Research Center of Integrated Quantum Electronics, Hokkaido University, Sapporo, Japan
Joungeob Lee
Affiliation:
Research Center of Integrated Quantum Electronics, Hokkaido University, Sapporo, Japan
Kanji Yoh
Affiliation:
Research Center of Integrated Quantum Electronics, Hokkaido University, Sapporo, Japan
Get access

Abstract

We have investigated an InAs channel Hall-bar structure with ferromagnetic spin injector in one of the current terminals. After magnetizing the Fe electrode, spin polarized electrons are injected through the edge of the isolation mesa structure and the anomalous Hall voltage is observed, when electrons are injected from the ferromagnetic terminal. However, when electrons are injected from the non-magnetic metal (Ti/Au) of opposite terminal, the Hall voltage disappeared to the variation error level due to the fabrication imperfections. This result suggests the possibility that out-of-plane spin injection from the channel edge lead to perpendicular nuclear magnetic field. It is presumably caused by nuclear spin polarization in InAs channel near the spin source edge through Overhauser effect. The estimated internal magnetic field was 2000 Gauss.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Žutić, I. et al. , Rev. Mod. Phys. 76 (2004) 323 Google Scholar
2. Datta, S. and Das, B., Appl. Phys. Lett. 56 (1990) 665.Google Scholar
3. Lou, X. et al. , Nature Phys. 3 (2007) 197.Google Scholar
4. Koo, H. C. et al. , Science 325 (2009) 1515.Google Scholar
5. Yoh, K. et al. , J. Vac. Sci. Technol. B 22 (2004) 1432.Google Scholar
6. Ohno, H. et al. , Jpn. J. Appl. Phys. 42 Pt. 2, No. 2A (2003) L87 Google Scholar
7. Schliemann, J. et al. , Phys. Rev. Lett. 90 (2003) 146801.Google Scholar
8. Winkler, R., Phys. Rev. B 69 (2004) 045317.Google Scholar
9. Benevig, B. A. et al. , Phys. Rev. B 72, 115204 (2005).Google Scholar
10. Cartoixà, X. et al. , Appl. Phys. Lett. 83 (2003) 1462.Google Scholar
11. Ohno, M. et al. , Phys. Rev. B 75 (2007) 241308(R).Google Scholar
12. Matsuda, T. et al. , Physica E 42 (2010) 979.Google Scholar
13. Overhauser, A.W., Phys. Rev. 89 (1953) 689.Google Scholar
14. Hashimoto, K. et al. , Phys. Rev. Lett. 88 (2002) 176601.Google Scholar
15. Lai, C W et al. , Phys. Rev. Lett. 96 (2006) 167403.Google Scholar
16. Yusa, G. et al. , Nature 434 (2005) 1001.Google Scholar
17. Gammon, D. et al. , Science 277 (1997) 85.Google Scholar
18. Salis, G. et al. , Phys. Rev. B 64 (2001) 195304.Google Scholar
19. Fuhrer, A. et al. , Appl. Phys. Lett. 98 (2011) 202104.Google Scholar
20. Paget, D. et al. , Phys. Rev. B 15 (1977) 5780.Google Scholar
21. Koppens, F. H. L. et al. , Science 309 (2005) 1346.Google Scholar
22. Braun, P. -F. et al. . Phys. Rev. B 74 (2006) 245306.Google Scholar