Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:33:56.475Z Has data issue: false hasContentIssue false

The Novel Synthesis of Silicon and Germanium Nanocrystallites

Published online by Cambridge University Press:  17 March 2011

Susan M. Kauzlarich
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Qi Liu
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Shih-Chieh Yin
Affiliation:
Department of Chemistry University of California at Davis One Shields Ave Davis, CA 95616, U.S.A
Howard W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory P. O. Box 808 Mail Stop L-174 Livermore, CA 94551
Boyd Taylor
Affiliation:
Lawrence Livermore National Laboratory P. O. Box 808 Mail Stop L-174 Livermore, CA 94551
Get access

Abstract

Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heath, J. R., Science 258, 1131 (1992).Google Scholar
2. Heath, J. R. and LeGoues, F. K., Chem. Phys. Lett. 208, 263 (1993).Google Scholar
3. Heath, J. R., Shiang, J. J., and Alivisatos, A. P., J. Chem. Phys. 101, 1607 (1994).Google Scholar
4. Heath, J. R., Williams, R. S., Shiang, J. J., Wind, S. J., Chu, J., D'Emic, C., Chen, W., Stanis, C. L., and Bucchignano, J. J., J. Phys. Chem. 100, 3144 (1996).Google Scholar
5. Wilcoxon, J. P., Samara, G. A., and Provencio, P. N., Phys. Rev. B 60, 2704 (1999).Google Scholar
6. Wilcoxon, J. P. and Samara, G. A., Appl. Phys. Lett. 74, 3164 (1999).Google Scholar
7. Fojtik, A., Weller, H., Fiechter, S., and Henglein, A., Chem. Phys. Lett. 134, 477 (1987).Google Scholar
8. Fojtik, A. and Henglein, A., Chem. Phys. Lett. 221, 363 (1994).Google Scholar
9. Littau, K. A., Szajowshki, P. J., Muller, A. J., Kortan, A. R., and Brus, L. E., J. Phys. Chem. 97, 1224 (1993).Google Scholar
10. Brus, L., J. Phys. Chem. 98, 3575 (1994).Google Scholar
11. Brus, L. E., Szajowski, P. F., Wilson, W. L., Harris, T. D., Schuppler, S., and Citrin, P. H., J. Am. Chem. Soc. 117, 2915 (1995).Google Scholar
12. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowshki, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).Google Scholar
13. Buuren, T. van, Dinh, L. N., Chase, L. L., Siekhaus, W. J., and Terminello, L. J., Phys. Rev. Lett. 80, 3803 (1998).Google Scholar
14. Bley, R. A. and Kauzlarich, S. M., J. Am. Chem. Soc. 118, 12461 (1996).Google Scholar
15. Bley, R. A. and Kauzlarich, S. M., in Nanoparticles in Solids and Solutions (Fendler, J. H. and Dékány, I., eds.), (Kluwer Academic Press, the Netherlands, 1996) p. 467.Google Scholar
16. Bley, R. A. and Kauzlarich, S. M., in Nanoparticles and Nanostructures Films (Fendler, J. H., ed.), (Wiley-VCH, Weinheim, 1998) p. 101.Google Scholar
17. Yang, C.-S., Bley, R. A., Kauzlarich, S. M., Lee, H. W. H., and Delgado, G. R., J. Am. Chem. Soc. 121, 5191 (1999).Google Scholar
18. Taylor, B. R., Kauzlarich, S. M., Lee, H. W. H., and Delgado, G. R., Chem. Mater. 10, 22 (1998).Google Scholar
19. Taylor, B. R., Kauzlarich, S. M., Delgado, G. R., and Lee, H. W. H., Chem. Mater. 11, 2493 (1999).Google Scholar
20. Haushalter, R. C., Angew. Chem., Int. Ed. Engl. 22, 558 (1983).Google Scholar
21. Haushalter, R. C., O'Connor, C. J., Haushalter, J. P., Umarji, A. M., and Shenoy, G. K., Angew. Chem., Int. Ed. Eng. 23, (1984).Google Scholar
22. Corbett, J. D., Chem. Rev. 85, 383 (1985).Google Scholar
23. O'Connor, C. J., Jung, J.-S., and Zhang, J. H., in Chemistry, Structure, and Bonding of Zintl Phases and Ions (Kauzlarich, S. M., ed.), (VCH Publishers, Inc., New York, 1996) p. 275.Google Scholar
24. Busmann, V. E., Z. Anorg. Allg. Chem. 313, 90 (1961).Google Scholar
25. Hey-Hawkins, E. and Schnering, H. G. von, Chem. Ber. 124, 1167 (1990).Google Scholar
26. Bansal, A., Li, X., Lauermann, I., and Lewis, N. S., J. Am. Chem. Soc. 118, 7225 (1996).Google Scholar