Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:48:46.967Z Has data issue: false hasContentIssue false

Novel Routes to Microwave Processing of Ceramic Materials

Published online by Cambridge University Press:  15 February 2011

M. Willert-Porada*
Affiliation:
University Dortmund, Dept. Chem. Eng., D-44221 Dortmund, F.R. Germany
Get access

Abstract

Material parameters important for microwave processing are identified in case of powder synthesis from precursor compounds and in case of sintering Al2O3- as well as SiC-matrix ceramics. By varying the spatial distribution of the precursor in microwave transparent materials, different pyrolysis temperatures are obtained, which can be attributed to different heating rates due to selective microwave heating. The microwave sintering behavior of oxide ceramics is strongly influenced by the specific surface area of the powder and by aliovalent dopants. In contrast, for covalent ceramics, like SiC+TiC, no experimental evidence for similar effects was obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sutton, W.H., “Microwave Processing of Ceramics”, Bull. Am. Cer. Soc., 68(2), 376 (1989)Google Scholar
2. Sutton, W.H., “Microwave Processing of Ceramics - An Overview” in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W.H. and Iskander, M.F. (Mater. Res. Soc. Proc. 269, Pittsburgh, PA, 1992) pp. 320.Google Scholar
3. Thomas, J.J., Christensen, R.J., Johnson, D.L. and Jennings, H.M., “Nonisothermal Microwave Processing of Reaction-Bonded Silicon Nitride”, J. Am. Ceram. Soc., 76 (5), 13841386 (1993).Google Scholar
4. Palaith, D., Silberglitt, R., “Microwave Joining of Ceramics”, Bull. Am. Cer. Soc., 68(9), 1601 (1989).Google Scholar
5. Willert-Porada, M., Gerdes, T., Vodegel, S., “Metalorganic and Microwave Processing of Cermets”, in Ref. 2, 205210 (1992).Google Scholar
6. Kriegsmann, G.A. and Varatharajah, P., “Formation of Hot Spots in Microwave Heated Ceramic Rods”, in Microwaves: Theory and Application in Materials Processing II, edited by Clark, D.E., Tinga, W.R. and Laia, J.R. (Ceram. Trans. 36, 1993), pp 221228.Google Scholar
7. Willert-Porada, M., “Reaction Rate Controlled Microwave Processing of Ceramic Materials”, in Ref. 6, 277286 (1993).Google Scholar
8. Vodegel, S., “Microwave Sintering of Alumina Ceramics”, PhD thesis, University Dortmund (F.R. Germany) 1993.Google Scholar
9. De, A., Ahmad, I., Whitney, E.D., and Clark, D.E., “Microwave (Hybrid) Heating of Alumina at 2.45 GHz”, in Microwaves: Theory and Application in Materials Processing, edited by Clark, D.E., Gac, F.D., and Sutton, W.H. (Ceram. Trans. 21, 1991), pp 319328 and 329–339.Google Scholar
10. Willert-Porada, M., Fischer, B., and Gerdes, T., “Application of Microwave Heating to Combustion Synthesis and Sintering of Al2O3-TiC Ceramics”, in Ref. 6, 365375 (1993).Google Scholar
11. Gerdes, T., and Willert-Porada, M., “Microwave Sintering of Metal-Ceramic and Ceramic- Ceramic Composites”, this volume.Google Scholar
12. Willert-Porada, M., Krummel, T., Rohde, B., and Moormann, D., “Ceramic Powders Generated by Metalorganic and Microwave Processing”, in Ref. 2, 199204 (1992).Google Scholar
13. Willert-Porada, M., “Metalorganic and Microwave Processing of Monolithic and Polyphasic Ceramics”, in Ref. 2, 193198 (1992).Google Scholar
14. Liebertz, H., MSc thesis, University Dortmund, 1991.Google Scholar
15. Willert-Porada, M., Dennhöfer, S., Hachmeister, D., “Microwave Pyrolysis of Emulsified Ceramic Precursor Compounds”, this volume.Google Scholar
16. Willert-Porada, M., unpublished results.Google Scholar
17. Willert-Porada, M., Vodegel, S., German Pat. Appl. P 42 24 974.0 (1992)Google Scholar
18. Willert-Porada, M., “Microwave Processing of Metalorganics to Form Powders, Compacts, and Functional Gradient Materials”, MRS Bull., Vol. XVIII (11), 5157 (1993)Google Scholar
19. Borchert, R., MSc. thesis, University Dortmund, 1993.Google Scholar
20. Janney, M. A. and Kimrey, H.D., “Microwave Sintering of Alumina at 28 GHz”, Ceram. Trans 1, 919924 (1988).Google Scholar
21. Katz, I.D., Blake, R.D., and Kenkre, V.M., “Microwave Enhanced Diffusion?”, in Ref. 9, 95105 (1991).Google Scholar
22. Vodegel, S., Hannappel, S., Willert-Porada, M., “Microstructure Evolution in Microwave Sintered Alumina”, Metall, 48 (3), 206210 (1994).Google Scholar
23. Moreno, R., Miranzo, P., Requena, J., Moya, J.S., Molla, J., and Ibarra, A., “Effect of Powder Characteristics on Dielectric Properties of Alumina Compacts”, in Ref. 9, 225232 (1991).Google Scholar
24. Toropov, N. A., Vasilewa, V.A., Doki. Akad. Nauk SSSR, 152, 13791382, (1963) for SC2O3-AI2O3; Phase Diagramms for Ceramists, Fig. 4377, 4378, 6452, for Zr02-Al2O3.Google Scholar
25. Nowick, A. S., Diffusion in Crystalline Solids, Academic Press (1984), pp. 143188.Google Scholar
26. Willert-Porada, M., Borchert, R., Gerdes, T., “Microwave Sintering of Dispersion Ceramics”, Proc. of Annual Meeting of DKG, Weimar 1993.Google Scholar
27. Johnson, D.L., “Microwave Heating of Grain Boundaries in ceramics”, J. Am. Ceram. Soc., 74, 849 (1991).Google Scholar
28. Young, R. M. and McPherson, R., “Temperature Gradient Driven Diffusion in Rapid-Rate Sintering”, J. Am. Ceram. Soc., 72, 1080 (1989).Google Scholar
29. Weiler, M. and Schubert, H., “Internal Friction, Dielectric Loss, and Ionic Conductivity of Tetragonal ZrO2-3%Y2O3 (Y-TZP)”, J. Am. Ceram. Soc., 69, 573577 (1986).Google Scholar