Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:42:56.639Z Has data issue: false hasContentIssue false

A Novel Method to Synthesize Blue-Luminescent Doped GaN Powders

Published online by Cambridge University Press:  01 February 2011

R. Garcia
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85281-1504
A. Thomas
Affiliation:
Rogers Corporation, Durel Division, Chandler, AZ 85224-6155
A. Bell
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85281-1504
F. A. Ponce
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85281-1504
Get access

Abstract

A new method to synthesize highly luminescent GaN:Mg powders has been developed. This method has a high control over the concentration of magnesium in the final product. The method consists of reacting a high purity (99.999 %) galliummagnesium alloy with ultra-high purity ammonia in a horizontal quartz tube reactor at high temperatures for several hours. Electron microscopy showed that the light-gray powders produced by this method consist of at least two different shaped crystallites; large columnar crystals sized around 10 μm and small platelets crystals between 1 and 2 μm. X-ray diffraction showed that those crystallites have a well defined wurtzite structure. Room temperature photoluminescence (PL) and cathodoluminescence (CL) showed a high intensity blue emission around 2.94 eV (422 nm). At helium temperature the well known Mg-related donor-acceptor pair band was observed at 3.25 eV (380 nm) by PL and CL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ponce, F. A. and Bour, D. P., Nature (London) 386, 351 (1997).Google Scholar
2 Nakamura, S., Science 281, 956 (1998).Google Scholar
3 Srite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 12371262 (1992).Google Scholar
4 Stekle, A. J and Zavada, J. M., MRS Bull. 24, 3338 (1999).Google Scholar
5 Lee, S. H., Nahm, K. S., Suh, E.-K. and Hong, M. H., Phys. Stat. Sol., 288, 371373 (2001).Google Scholar
6 Massalski, T. B., Okamoto, H., Subramanian, P. R., Kacprzak, L., “Binary Alloy Phase Diagrams,” ed. Massalki, T. B., Okamoto, H., Subramanian, P. R. and Kacprzak, L., pp.18221823 (1990).Google Scholar
7 García, R., Hirata, G. A., Farías, M. H. and McKittrick, J., Materials Science and Engineering (B): Solid State Materials for Advanced Technology, B90, 712 (2002).Google Scholar
8 Kim, W., Botchkarev, A. E., Salvator, A., Popovici, G., Tang, H. and Morkoc, H., J. Appl. Phys., 82, 219226 (1997).Google Scholar
9 Monemar, B., J. Phys.: Condens. Matter, 13, 70117026 (2001).Google Scholar
10 Albrecht, M., Christiansen, S., Salviati, G., Zanotti-Fregonara, C., Rebane, Y. T., Shreter, Y. G., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. J., Bremser, M. D., Davis, R. F., and Strunk, H. P., Mat. Res. Soc. Symp. Proc. Vol., 468, 293298 (1997).Google Scholar
11 Dingle, R. and Ilegems, M., Solid State Communications, 9, 175180 (1971).Google Scholar