No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
In this paper a phenomenological characterisation of an anomalous grain growth, observed after classical electromigration lifetests, on Al-l%Si-0.5%Cu multigrain stripes, deposited at high temperature (460°C) on a Ti substrate, is reported. Failure analysis, carried out by Scanning Electron Microscopy (SEM) and Focus Ion Beam (FIB), has detected an abnormal single-grain growth in the vertical direction, starting from the Ti/Al interface. Medium Time to Failure (MTF) data are compared with those of stripes on Ti/TiN substrate, on which no grain growth was observed. The growth of the anomalous grains has been related to the Ti/Al interface properties. Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM) analyses concurrently show a higher texture of the film on the Ti, compared with the film on the Ti/TiN substrate. The tight columnar orientation of grain boundaries strongly limits the mechanism of grain boundary diffusion during electromigration stress. The atomic flux is then forced to take place at the Ti/Al interface, where the epitaxial growth of the Al single grains is favoured.