Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:47:57.711Z Has data issue: false hasContentIssue false

Non-Local Hall Resistance in FePt / Au Multi-Terminal Devices

Published online by Cambridge University Press:  02 August 2012

Koki Takanashi
Affiliation:
Insititute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Shun Shibata
Affiliation:
Insititute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Isamu Sugai
Affiliation:
Insititute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Takeshi Seki
Affiliation:
Insititute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

In order to understand the electric current distribution in a non-local geometry, the geometrical dependence of non-local Hall resistance was investigated for lateral devices consisting of an FePt perpendicular spin polarizer and a Au Hall cross. The finite element simulation was also carried out to calculate the electric potential in the devices. The experiment and the simulation indicated that non-local Hall resistance included the contribution of anomalous Hall effect (AHE) in the FePt perpendicular spin polarizer. The resistance change due to AHE in FePt became remarkable for devices with a wide electrode. Taking into account the contribution of AHE, the spin Hall angle was estimated to be 0.05 for the device with a narrow Au electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dyakonov, M. I. and Perel, V. I., Phys. Lett., 35A, 459 (1971).10.1016/0375-9601(71)90196-4Google Scholar
2. Hirsch, J. E., Phys. Rev. Lett., 83, 1834 (1999).10.1103/PhysRevLett.83.1834Google Scholar
3. Zhang, S., Phys. Rev. Lett., 85, 393 (2000).10.1103/PhysRevLett.85.393Google Scholar
4. Murakami, S., Nagaosa, N., and Zhang, S., Science, 301, 1348 (2003).10.1126/science.1087128Google Scholar
5. Valenzuela, S. O. and Tinkham, M., Nature 442, 176 (2006).10.1038/nature04937Google Scholar
6. Saitoh, E., Ueda, M., Miyajima, H., and Tatara, G., Appl. Phys. Lett., 88, 182509 (2006).10.1063/1.2199473Google Scholar
7. Kimura, T., Otani, Y., Sato, T., Takahashi, S., and Maekawa, S., Phys. Rev. Lett., 98, 156601 (2007).10.1103/PhysRevLett.98.156601Google Scholar
8. Seki, T., Hasegawa, Y., Mitani, S., Takahashi, S., Imamura, H., Maekawa, S., Nitta, J., and Takanashi, K., Nature Mater., 7, 125 (2008).10.1038/nmat2098Google Scholar
9. Mosendz, O., Pearson, J. E., Fradin, F. Y., Bauer, G. E. W., Bader, S. D., and Hoffmann, A., Phys. Rev. Lett., 104, 046601 (2010).10.1103/PhysRevLett.104.046601Google Scholar
10. Morota, M., Niimi, Y., Ohnishi, K., Wei, D. H., Tanaka, T., Kontani, H., Kimura, T., and Otani, Y., Phys. Rev. B, 83, 174405 (2011).10.1103/PhysRevB.83.174405Google Scholar
11. Liu, L., Moriyama, T., Ralph, D. C., and Buhrman, R. A., Phys. Rev. Lett., 106, 036601 (2011).10.1103/PhysRevLett.106.036601Google Scholar
12. Niimi, Y., Morota, M., Wei, D. H., Deranlot, C., Basletic, M., Hamzic, A., Fert, A., and Otani, Y., Phys. Rev. Lett., 106, 126601 (2011).10.1103/PhysRevLett.106.126601Google Scholar
13. Guo, G. Y., Maekawa, S., and Nagaosa, N., Phys. Rev. Lett., 102, 036401 (2009).10.1103/PhysRevLett.102.036401Google Scholar
14. Gradhand, M., Fedorov, D. V., Zahn, P., and Mertig, I., Phys. Rev. B, 81, 245109 (2010).10.1103/PhysRevB.81.245109Google Scholar
15. Sugai, I., Mitani, S., and Takanashi, K., IEEE Trans. Magn., 46, 2559 (2010).10.1109/TMAG.2010.2044889Google Scholar
16. Gu, B., Sugai, I., Ziman, T., Guo, G. Y., Nagaosa, N., Seki, T., Takanashi, K., and Maekawa, S., Phys. Rev. Lett., 105, 216401 (2010).10.1103/PhysRevLett.105.216401Google Scholar
17. Takahashi, S. and Maekawa, S., Phys. Rev. B, 67, 052409 (2003).10.1103/PhysRevB.67.052409Google Scholar