Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:46:48.308Z Has data issue: false hasContentIssue false

Nonlinear Optical Materials Based on Benzobisthiazole. Electronic Structure/Molecular Architecture/Polarizability/Hyperpolarizability Relationships Derived from π-Electron Theory

Published online by Cambridge University Press:  25 February 2011

Dequan Li
Affiliation:
Department of Chemistry and Materials Research Center Northwestern University, Evanston, IL 60208
T. J. Marks
Affiliation:
Department of Chemistry and Materials Research Center Northwestern University, Evanston, IL 60208
M. A. Ratner
Affiliation:
Department of Chemistry and Materials Research Center Northwestern University, Evanston, IL 60208
Get access

Abstract

Factors contributing to the polarizability (αij) and frequencydoubling hyperpolarizability (βijk) of 2-(p-dimethylaminophenyl)-6-(pnitrophenyl) benzo(l,2-d:4,5-d′ )blsthiazole (DNBT) are analyzed via perturbation theory and the PPP-SCF-MECI π-electron model Hamiltonian. While the observable part of β (βvec) is clearly identifiable with a small number of charge transfer excitations along the molecular dipole direction, a (and by inference, the second-order hyperpolarizability γ) is more closely related to the overall size (volume) of the π-electron cloud. As a consequence, βvec is far more sensitive to molecular distortions which affect donor-acceptor charge transfer interactions than is π. The more sensitive frequency dependence of βvec can be understood in terms of the three-photon character of this nonlinearity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chemla, D. S. and Zyss, J., Eds. Nonlinear Optical Properties of Organic Molecules and Crystals, Academic: New York 1987; Vols. 1,2.Google Scholar
2. Khanarian, G., Ed. Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, SPIE, 682 (1986).Google Scholar
3. Williams, D. J., Angew. Chem. Int. Ed. Engl. 23, 490 (1984).CrossRefGoogle Scholar
4. Li, D., Marks, T. J., and Ratner, M. A., Chem. Phys. Lett. 131, 370 (1986).Google Scholar
5. Li, D., Yang, J., Ye, C., Ratner, M. A., Wong, G., Marks, T. J. in Nonlinear Optical and Electroactive Polymers, edited by Prasad, P. N. and Ulrich, D. R. (Plenum Press, New York, in press).Google Scholar
6. Li, D., Ratner, M. A., and Marks, T. J., J. Am. Chem. Soc., in press.Google Scholar
7. Li, D., Ratner, M. A., and Marks, T. J., unpublished results.Google Scholar
8. Reported in part at the 193rd ACS National Meeting, Denver, CO, April 5-10, 1987, Abstract PHYS 181.Google Scholar
9. Allen, S. R., Filippov, A. G., Farris, R. J., Thomas, E. L., Wong, C.-P., Berry, C. C., and Chenevey, E. C., Macromolecules, 14, 1135 (1981), and references therein.Google Scholar
10. Ward, J. F., Rev. Mod. Phys. 36, 1 (1965).CrossRefGoogle Scholar
11. Bloembergen, N., Lotem, H., and Lynch, R. T., Indian J. Pure Appl. Phys. 16, 151 (1978).Google Scholar
12. Pople, J. A., Trans. Faraday Soc. 49, 1375 (1953).Google Scholar
13. Pariser, R. and Parr, R. G., J. Chem. Phys. 21, 466 (1953).Google Scholar
14. Jørgensen, P. and Linderberg, J., Inter. J. Quantum Chem. 4, 587 (1970).CrossRefGoogle Scholar
15. Dirk, C. W., Twieg, R. J., and Wagniere, G., J. Am. Chem. Soc. 108, 5387 (1986).Google Scholar
16. Tables of Interatomic Distances and Configuration in Molecules and Ions (Chemical Society, London, 1965) Spec. Pub. No. 18.Google Scholar
17. Wellman, M. W., Adams, W. W., Wolff, R. A., Dudis, D. S., Wiff, D. R., and Fratini, A. F., Macromolecules 14, 935 (1981).CrossRefGoogle Scholar
18. Oudar, J. L. and Chemla, D. S., J. Chem. Phys. 66, 2664 (1977).Google Scholar
19. Li, D., Marks, T. J., and Ratner, M. A., unpublished results.Google Scholar
20. Stevenson, S. H. and Meredith, G. R., in ref. 2, pp. 147–152.Google Scholar