Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:57:46.575Z Has data issue: false hasContentIssue false

Nondestructive Imaging of Materials Microstructures Using X-Ray Tomographic Microscopy

Published online by Cambridge University Press:  21 February 2011

J.H. Kinney
Affiliation:
Chemistry and Materials Sciences Department, Lawrence Livermore National Laboratory, Livermore CA 94550
M.C. Nichols
Affiliation:
Sandia National Laboratories, Livermore CA 94550
U. Bonse
Affiliation:
Department of Physics, University of Dortmund, Dortmund Germany
S.R. Stock
Affiliation:
School of Materials Engineering, Georgia Institute of Technology, Atlanta GA 30332
T.M. Breunig
Affiliation:
School of Materials Engineering, Georgia Institute of Technology, Atlanta GA 30332
A. Guvenilir
Affiliation:
School of Materials Engineering, Georgia Institute of Technology, Atlanta GA 30332
R.A. Saroyan
Affiliation:
Chemistry and Materials Sciences Department, Lawrence Livermore National Laboratory, Livermore CA 94550
Get access

Abstract

A technique for nondestructively imaging microstructures of materials in situ, especially a technique capable of delineating the time evolution of chemical changes or damage, will greatly benefit studies of materials processing and failure. X-ray tomographic microscopy (XTM) is a high resolution, three-dimensional inspection method which is capable of imaging composite materials microstructures with a resolution of a few micrometers. Because XTM is nondestructive, it will be possible to examine materials under load or during processing, and obtain three-dimensional images of fiber positions, microcracks, and pores. This will allow direct imaging of microstructural evolution, and will provide time-dependent data for comparison to fracture mechanics and processing models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kinney, J.H., et al., J. Mat. Res., 5, 1123 (1990).CrossRefGoogle Scholar
2. Bonse, U., et al., accepted for publication in J. Mat. Science, (1990).Google Scholar
3. Herman, G.T., Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York, 1980).Google Scholar
4. Elliott, J.C. and Dover, S.D., J. Microscopy 126, 211 (1982).CrossRefGoogle Scholar
5. Stock, S.R., Guvenilir, A., Elliott, J.C., Anderson, P., Dover, S.D. and Bowen, D.K., in Advanced Characterization Techniques for Ceramics (American Ceramic Society, Westervill, Ohio, in press).Google Scholar
6. Seguin, F.H., Burstein, P., Bjorkholm, P.J., Homburger, F., and Adams, R.A., Appl. Opt. 24, 4117 (1985).CrossRefGoogle Scholar
7. Cueman, M.K., Thomas, L.J., Trzaskos, C., and Greskovich, C., in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, Dale E., eds. (Plenum Press, New York, 1989), Vol.8A. p. 431.CrossRefGoogle Scholar
8. Bonse, U., Johnson, Q., Nichols, M., Nusshardt, R., Krasnicki, S. and Kinney, J., Nucl. Instrum. Methods A246, 644 (1986).CrossRefGoogle Scholar
9. Feldkamp, L. A., Jesion, G., and Kubinski, D.J., in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, Dale E., eds. (Plenum Press, New York, 1989), Vol.8A., 381. CrossRefGoogle Scholar
10. Feldkamp, L.A., Davis, L.C., and Kress, J.W., J. Opt. Soc., A1 612(1984).CrossRefGoogle Scholar
11. Martz, H.E., Azevedo, S.G., Brase, J.M., Waltjen, K.E. and Schneberk, D.J., Int. Jour. of Radiation Applications and Instrumentation Part A (UCRL -98492 Livermore Report) to be published 1990.Google Scholar
12. Kinney, J., Johnson, Q., Bonse, U., Nusshardt, R., andNichols, M.C., SPIE 691, 43 (1986).Google Scholar
13. Kinney, J.H., Johnson, Q.C., Saroyan, R.A., Nichols, M.C., Bonse, U., Nusshardt, R. and Pahl, R., Rev. Sci. Instrum. 59, 196 (1988).CrossRefGoogle Scholar
14. Nichols, M.C., et al., Rev. Sci. Instrum. 60, 2475 (1989).CrossRefGoogle Scholar
15. Bonse, U., et al., Rev. Sci. Instrum. 60, 2478 (1989).CrossRefGoogle Scholar
16. Flannery, B.P., Deckman, H., Roberge, W., and D'Amico, K., Science 237, 1439 (1987).CrossRefGoogle Scholar
17. Deckman, H.W., D'Amico, K.L., Dunsuir, J.H., Flannery, B.P. and Gruner, S.M., in Advances in X-ray Analysis 32, 641 (Plenum Press, New York 1989).CrossRefGoogle Scholar
18. Ito, M., Yamaguchi, M., Oba, K., and Kanzo, S.,IEEE Transactions on Nuclear Science NS-34, 401 (1987).CrossRefGoogle Scholar
19. Wilcox, T.P. Jr., and Lent, E. M., in COG- A Particle Transport Code Designed to Solve the Boltzmann Equation for Deep-Penetration Problems, M-221–1 (Lawrence Livermore National Laboratory, Livermore California 1989).Google Scholar
20. Breunig, T.M., Stock, S.R., Kinney, J.H., Guvenilir, A., and Nichols, M.C., presented at the MRS Fall Meeting, Boston, November 1990 (to be published in these proceedings).Google Scholar
21. Sample provided by Copley, D., GE Aircraft Engines, Cincinnati,OH. Google Scholar
22. Starr, T.L., Ceramic Engineering and Science Proceedings, 8, 951 (1987).CrossRefGoogle Scholar
23. Breunig, T.M., Stock, S.R., Antolovich, S.D., Kinney, J.,Massey, W. and Nichols, M.C., Proceedings of the 22nd National Symposium on Fracture Mechanics, June 1990, Atlanta GA (to be published in a STP by ASTM).Google Scholar