Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T01:05:06.606Z Has data issue: false hasContentIssue false

Nonaqueous Viscous Electrolytes for Growth of Anodic Titania Nanotubes

Published online by Cambridge University Press:  01 February 2011

Jan M. Macak
Affiliation:
macak@ww.uni-erlangen.de, University of Erlangen, D. of Materials Science, Martensstr. 7, Erlangen, 91058, Germany
Sergiu P. Albu
Affiliation:
albu@ww4.ww.uni-erlangen.de, University of Erlangen, Materials Science, Erlangen, 91058, Germany
Patrik Schmuki
Affiliation:
schmuki@ww.uni-erlangen.de, University of Erlangen, Materials Science, Erlangen, 91058, Germany
Get access

Abstract

The present work compares two different organic electrolytes (glycerol and ethylene glycol) for the growth of self-organized TiO2 nanotubes by anodic oxidation of Ti. In both electrolytes these self-organized layers of TiO2 nanotubes can be grown to considerable thickness (several 10 μm). It is found that except for the detailed electrochemical conditions also the water content has a dramatic influence on the tube dimensions, mainly length and tube morphology. The best result in terms of length is achieved in “water-free” electrolytes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Regan, B.O' and Grätzel, M., Nature 353 (1991) 737.Google Scholar
2. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Science 293 (2001) 269.Google Scholar
3. Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., Electrochim. Acta 45 (1999) 921.Google Scholar
4. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., E. C. Dickey, J.Mater. Res. 16 (2001) 3331.Google Scholar
5. Beranek, R., Hildebrand, H., and Schmuki, P., Electrochem. Solid-State Lett. 6 (2003) B12.Google Scholar
6. Macak, J. M., Sirotna, K., Schmuki, P., Electrochim. Acta 50 (2005) 3679.Google Scholar
7. Macak, J. M., Tsuchiya, H., Schmuki, P., Angew. Chem.Int.Ed. 44 (2005) 2100.Google Scholar
8. Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S., Schmuki, P., Angew. Chem. Int. Ed. 44 (2005) 7463.Google Scholar
9. Ruan, Ch., Paulose, M., Varghese, O.K., Mor, G. K., Grimes, C.A., J. Phys. Chem. B 109 (2005) 15754.Google Scholar
10. Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K., P. Schmuki, Electrochem. Commun. 7 (2005) 576.Google Scholar
11. Macak, J.M., Schmuki, P., Electrochim. Acta 52 (2006) 1258.Google Scholar
12. M. Paulose et al., J. Phys. Chem. B 110 (2006) 16179.Google Scholar
13. Albu, S., Ghicov, A., Macak, J.M., Schmuki, P., Phys. Stat. Sol. (RRL) 1 (2007) R65.Google Scholar
14. Masuda, H., Fukuda, K., Science 268 (1995) 1466.Google Scholar