Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:38:09.815Z Has data issue: false hasContentIssue false

Nitrided Silicon Oxide Gate Dielectrics for Submicron Device Technology

Published online by Cambridge University Press:  10 February 2011

Get access

Abstract

The research in this paper is based on an approach to low‐temperature/low‐thermal budget device fabrication that combines plasma and rapid thermal processing, and which has been customized to control separately: (i) the N‐atom bonding chemistry and composition profiles, and (ii) the structural and chemical relaxations necessary for device‐quality performance and reliability for stacked gate structures. Control of N‐atom incorporation at the monolayer level at the crystalline‐Si and polycrystalline‐Si interfaces of field effect transistors, and at alloy levels within the bulk dielectrics has been achieved by combining low‐temperature (∼300°C) plasma‐assisted processes to generate the N‐atom concentration profiles, with low‐thermal‐budget rapid thermal annealing (RTA) to promote chemical and structural relaxations that minimize defects and defect precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Han, L.K., Bhat, M., Wristers, D., Wang, H.H. and Kwong, D.L., Microelectron. Eng. 28, 89 (1995).Google Scholar
2 Green, M., Brasen, D., Evans‐Lutterodt, K.W., Feldman, L.C., Krisch, K., Lennard, W., Tang, H.‐T., Manchanda, L. and Tang, M.‐T., Appl. Phys. Lett. 65, 848 (1994).Google Scholar
3 Ito, T., Nakamura, T. and Ishikawa, H., IEEE Trans. Electron Devices 29, 498 (1982).Google Scholar
4 Hori, T. and Iwasaki, H., IEEE Electron Device Lett. 10, 195 (1989).Google Scholar
5 Lo, G.Q. and Kwong, D.L., IEEE Electron Device Lett. 12 (1991).Google Scholar
6 Okada, Y. IEEE Trans. Electron Devices 41, 175 (1994) 191.Google Scholar
7 Lucovsky, G., Wortman, J.J., Yasuda, T., Xu, X‐L, Misra, V, Hattangady, S.V., Ma, Y. and Hornung, B., J. Vac. Sci. Technol. B12, 2839 (1994).Google Scholar
8 Lucovsky, G., Ma, Yi, Hattangady, S.V., Lee, D.R., Lu, Z., Misra, V., Wortman, J.J. and Whitten, J.L., Jpn. J. Appl. Phys. 33, 7061 (1994).Google Scholar
9 Lee, D.R., Lucovsky, G., Denker, M.S. and Magee, C., J. Vac. Sci. Technol. A 13, 607 (1995).Google Scholar
10 Lee, D.R., Parker, C., Hauser, J.R. and Lucovsky, G. J. Vac. Sci. Technol. B 13, 1788 (1995).Google Scholar
11 Le, D.R., Ph.D. Dissertation, North Carolina State University (1995).Google Scholar
12 Ma, Y., Yasuda, T., and Lucovsky, G., Appl. Phys. Lett. 64, 2226 (1994).Google Scholar
13 Hattangady, S.V., Niimi, H. and Lucovsky, G. Appl. Phys Lett. 66, 3495 (1995).Google Scholar
14 Hattangady, S.V., Ph.D. Dissertation, North Carolina State University (1995).Google Scholar
15 Niimi, H., Koh, K. and Lucovsky, G., these proceedings.Google Scholar
16 Yasuda, T., Ma, Y., Habermel, S. and Lucovsky, G., Appl. Phys. Lett. 60, 434 (1992).Google Scholar
17 Lucovsky, G., Niimi, H., Koh, K., Lee, D.R., and Jing, Z.,, in The Physics of SiO2 and Si‐SiO2 Interfaces, eds., Helms, C.R., Massoud, H.Z, and Poindexter, E.H. (ECS, Pennington, NJ, 1996), p. 441.Google Scholar
18 Bjorkman, C.H., Shearon, C.E. Jr., Ma, Y., Yasuda, T., Lucovsky, G., Emmerichs, U., Meyer, C., Leo, K. and Kurz, H., J. Vac. Sci. Technol. A11, 964 (1993).Google Scholar
19 Emmerichs, U., Meyer, C., Bakker, H.J., Wolter, F., Kurz, H., Lucovksy, G., Bjorkman, C., Yasuda, T., Ma, Yi, Jing, Z., and Whitten, J.L., J. Vac. Sci. Technol. B12, 2484 (1994).Google Scholar
20 Meyer, C., Lüpke, G., Emmerichs, U., Wolter, F., Kurz, H., Bjorkman, C.H. and Lucovsky, G.: Phys. Rev. Lett. 74, 3001 (1995).Google Scholar
21 Tsu, D.V., Parsons, G.N., Lucovsky, G. and Watkins, M.W., J. Vac. Sci. Technol. A7, 1115 (1989).Google Scholar
22 Saks, N.S., Ma, D.I. and Fowler, W.B., Appl. Phys. Lett. 67, 374 (1995).Google Scholar
23 Hattangady, S.V., Niime, H. and Lucovsky, G., J. Vac. Sci. Technol. A14, 3017 (1996).Google Scholar
24 DiMaria, D.J., Microelectron. Eng. 28, 63 (1995).Google Scholar
25 Stahlbush, R.E., Cartier, E. and Buchanan, D.A., Micorelectron. Eng. 28, 15 (1995).Google Scholar
26 Cartier, E. and Stathis, J.H., Micorelectron. Eng. 28, 3 (1995).Google Scholar
27 Ma, Y., Yasuda, T., Habermehl, S. and Lucovsky, G., J. Vac. Sci. Technol. B11, 1533 (1993).Google Scholar
28 Ma, Y., Yasuda, T., and Lucovsky, G., Appl. Phys. Lett. 64, 2226 (1994).Google Scholar
29 Jing, Z., Lucovsky, G. and Whitten, J.L., J. Vac. Sci. Technol. B13, 1613 (1995).Google Scholar
30 Lucovsky, G., Philos. Mag. B39, 513 (1979).Google Scholar
31 Lucovsky, G. and Chadi, D.J., in Physics of MOS Insulators, eds. Lucovsky, G., Pantelides, S.T. and Galeener, F.L. (Pergamon, New York, 1980), p. 301.Google Scholar
32 Lucovsky, G., Jing, Z., and Lee, D.R., J. Vac. Sci. Technol. B14, 2832 (1996).Google Scholar