Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:11:54.780Z Has data issue: false hasContentIssue false

New Structure Model for Lithium Nickel Batteries

Published online by Cambridge University Press:  10 February 2011

M.A. Monge
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
E. Gutiérrez-Puebla
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
I. Rasines
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain, rasinesi@icmm.csic.es
J.A. Campa
Affiliation:
Facultad de Ciencias Geolègicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
Get access

Abstract

After growing black colored single crystals of LixNi1−xO (x = 0.27) and solving its crystal structure, a model is proposed as an alternative to the structural type admitted for LixNi1−xO. The new rhombohedral cell consists of a cubic close packing of oxygens in which the alternation of two kind of mixed layers containing Li and Ni in different ratios can be detected along the c direction. This model implies a Li order incompatible with the alternation of Ni layers, one of them pure and the other containing some Li. The results of magnetization measurements look consistent with the new structural type, and reveal that LixNi1−xO behaves as mictomagnetic.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lee, Y.S., Sun, Y.K., and Nahm, K.S., , K.S., Solid State Ionics 118, p.15 9(1999).Google Scholar
2 Tao, S., Wu, Q., ZZhan, h., and Meng, G., Solid State Ionics 124, 53 (1999).Google Scholar
3 Dyer, L.D., Borie, B.S., and Smith, G.P., J. Am. Chem. Soc. 76, p. 1, 499 (1954).Google Scholar
4 Goodenough, J.B., Wickham, D.G., and Croft, W.J., J. Phys. Chem. Solids 5, p. 107 (1958).Google Scholar
5 Bajpai, A., and Banerjee, A., Phys. Rev. B 55, p. 12, 439 (1997).Google Scholar
6 Hirano, A., Kanno, R., Kawamoto, Y., Takeda, Y., Yamaura, K., Takano, M., Ohyama, K., Ohashi, M., and Yamaguchi, Y., Solid State Ionics 78, p. 12 (1995).Google Scholar
7 Massarotti, V., Capsoni, D., Bini, M., Mustarelli, P., and Marini, S.. Ionics 1, p. 421 (1995).Google Scholar
8 Shirakami, T., Takematsu, M., Hirano, A., Kanno, R., Yamaura, K., Takano, M., and Atake, T., Mater. Sc. Engineer. B 4 p. 70 (1998).Google Scholar
9 Yamaura, K., Takano, M., Hirano, A., and Kanno, R.J., Solid State Chem. 127, p. 109 (1996).Google Scholar
10 Takematsu, M., Shirakami, T., Atake, T., Hirano, A., and Kanno, R. in Solid State Ionics: New Developments, edited by Chowdari, B.V.R., World Scientific, Singapore, 1996, p. 330.Google Scholar
11 SMART and SHELXTL, Siemens Energy and Automation Inc. Analytical Instrumentation, 1996.Google Scholar
12 Boudreaux, E.A., and Mulay, L.N., Theory and Applications of Molecular Paramag-netism, Wiley, New York, 1976, p. 494495.Google Scholar
13 International Tables for Crystallography, edited by Wilson, A.J.C., Kluwer, Dordrecht, 1995, Vol. C, p. 219, 484-485.Google Scholar
14 International Centre for Diffraction Data. Powder Diffraction File. Card Nos. 47–1049, 41-890, and 4163.Google Scholar
15 Peres, J.P., Weill, F., and Delmas, C., Solid State Ionics 116, p. 19 (1999).Google Scholar
16 Evain, M., Boucher, F., and Gourdon, O., Chem. Mat. 10, p. 3068, 1998.Google Scholar
17 Merzt, D., Ksari, Y., Celestini, F., Debierre, J.M.,Stepanov, A., and Delmas, C., Phys. Rev. B 61, p. 1240 (2000).Google Scholar