Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:45:25.775Z Has data issue: false hasContentIssue false

New Functional Magnetic Shape Memory Alloys from First-Principles Calculations

Published online by Cambridge University Press:  31 January 2011

Peter Entel
Affiliation:
entel@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Mario Siewert
Affiliation:
mario@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Antje Dannenberg
Affiliation:
antje@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Markus Ernst Gruner
Affiliation:
me@thp.uni-duisburg.de, University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Manfred Wuttig
Affiliation:
wuttig@umd.edu, University of Maryland, Department of Materials Science, College Park, Maryland, United States
Get access

Abstract

An overview is given of new ferromagnetic Heusler alloys like Ni-Co-(Al, Ga, Zn), Co-Ni-(Al, Ga, Zn), Fe-Ni-(Al, Ga, Zn) and Fe-Co-(Al, Ga, Zn), which are compared with today's mostly investigated systems such as Ni-Mn-Z (Z = Al, Ga, In, Sn, Sb). The investigations are based on first-principles as well as Monte Carlo calculations. For some new systems, the simulations of atomic structure and magnetic and electronic properties allow to predict higher Curie and martensitic transformation temperatures than those of prototypical Ni-Mn-Z materials. Some of the new materials may be distinguished for devices which exploit the magnetic shape memory effect. Interestingly, in general, all off-stoichiometric alloys display competing antiferromagnetic correlations, which may be important for devices using the magnetocaloric effect. The Curie temperatures are obtained from Monte Carlo simulations using magnetic exchange parameters from ab initio calculations while the structural instability is inferred from local minima in the ab initio total energy curves as a function of the tetragonal distortion. The manifestation of phonon softening as a precursor of structural transformations is present in the austenitic phase of most of the calculated ferromagnetic shape-memory alloys. However, quite remarkably, we find that phonon softening is absent in a few systems such as Co2NiGa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ullakko, K., Huang, J. K., Kantner, C., O'Handley, R. C. and Kokorin, V. V., Appl. Phys. Lett. 69, 1966 (1996)Google Scholar
2 Ullakko, K., Huang, J. K., Kokorin, V. V. and O'Handley, R. C., Scr. Mater. 36, 1133 (1997).Google Scholar
3 Sozinov, A., Likhachev, A. A., Lanska, N., Ullakko, K., Appl. Phys. Lett. 80, 1746 (2002).Google Scholar
4 Tickle, R., James, R. D., Shield, T., Wuttig, M., and Kokorin, V. V., IEEE Trans. Magn. 35, 4301 (1999).Google Scholar
5 O'Handley, R. C. and Allen, S. M., “Shape Memory Alloys, Magnetically Activated Ferromagnetic Shape Memory Materials”, Encyclopedia of Smart Materials, ed. Schwartz, M. (Wiley, 2001) pp. 936951.Google Scholar
6 Vasil'ev, A. N., Buchelnikov, V. D., Takagi, T., Khovailo, V. V. and Estrin, E. I., Phys.-Usp. 46, 559 (2003).Google Scholar
7 Enkovaara, J., Ayuela, A., Zayak, T., Entel, P., Nordström, L., Dube, M., Jalkanen, J., Impola, J. and Nieminen, R. M., Mater. Sci. Eng. A 378, 52 (2004).Google Scholar
8 Heczko, O., J. Magn. Magn. Mater. 290-291, 787 (2005).Google Scholar
9 Söderberg, O., Ge, Y., Sozinov, A., Hannula, S.-P. and Lindros, V. K., “Giant Magnetostrictive Materials”, Handbook of Magnetic Materials, Vol. 16, ed. Buschow, K. H. J. (Elsevier, 2006) pp. 140.Google Scholar
10 Entel, P., Buchelnikov, V. D., Khovailo, V. V., Zayak, A. T., Adeagbo, W. A., Gruner, M. E., Herper, H. C. and Wassermann, E. F., J. Phys. D: Appl. Phys. 39, 865 (2006).Google Scholar
11 Entel, P., Buchelnikov, V. D., Gruner, M. E., Hucht, A., Khovailo, V. V., Nayak, S. K. and Zayak, A. T., Mater. Sci. Forum 583, 21 (2008).Google Scholar
12 Planes, A., Mañosa, L. and Acet, M., J. Phys: Condens. Matter 21, 233201 (2009).Google Scholar
13 Entel, P., Gruner, M. E., Dannenberg, A., Siewert, M., Nayak, S. K., Herper, H. C. and Buchelnikov, V. D., Mater. Sci. Forum 635, 3 (2010).Google Scholar
14 Acet, M., Mañosa, Ll. and Planes, A., “Magnetic-Field Induced Modifications in Martensitic Heusler-based Alloys”, preprint submitted to Elsevier (2009).Google Scholar
15 O'Handley, R. C., J. Appl. Phys. 83, 3263 (1998).Google Scholar
16 O'Handley, R. C., Murray, S. J., Marioni, M., Nembach, H., Allen, S. M., J. Appl. Phys. 87, 4712 (2000).Google Scholar
17 Vassiliev, A., J. Magn. Magn. Mater. 242-245, 66 (2002).Google Scholar
18 Otsuka, K. and Wayman, C. M., “Mechanism of Shape Memory Effect and Superelasticity”, Shape Memory Materials, ed. Otsuka, K. and Wayman, C. M. (Cambridge University Press, 1998) pp. 2748.Google Scholar
19 Kaufmann, S., Rößler, U. K., Heczko, O., Wuttig, M., Buschbeck, J., Schultz, L. and Fähler, S., arXiv:0906.5365.Google Scholar
20 Khachaturyan, A. G., Shapiro, S. M., and Semenovskaya, S., Phys. Rev. B 43 10832 (1991).Google Scholar
21 Gruner, M. E., Entel, P., Opahle, I., and Richter, M., J. Mater. Sci. 43, 3825 (2008).Google Scholar
22 Gruner, M. E. and Entel, P., J. Phys.: Condens. Matter 21, 293201 (2009).Google Scholar
23 Buschbeck, J., Niemann, R., Heczko, O., Thomas, M., Schultz, L. and Fähler, S., Acta Mater. 57, 2516 (2009).Google Scholar
24 Conti, S., Lenz, M. and Rumpf, M., J. Mech. Phys. Solids 55, 1462 (2007).Google Scholar
25 Nestler, B., Selzer, M. and Wendler, F., Phys. Rev. E 78, 011604 (2008).Google Scholar
26 Conti, S., Lenz, M. and Rumpf, M., Mater. Sci. Eng. A 481-482, 351 (2008).Google Scholar
27 Hume-Rothery, W., J. Inst. Met. 35, 295 (1926).Google Scholar
28 Aksoy, S., Acet, M., Wassermann, E. F., Krenke, T., Moya, X., Mañosa, L., Planes, A. and Deen, P., Phil. Mag. 89, 2093 (2009).Google Scholar
29 Khovailo, V. V., Novosad, V., Takagi, T., Filippov, D. A., Levitin, R. Z. and Vasil'ev, A., Phys. Rev. B 70, 174413 (2004).Google Scholar
30 Filippov, D. A., Khovailo, V. V., Koledov, V. V., Krasnoperov, E. P., Levitin, R. Z., Shavrov, V. G. and Takagi, T., J. Magn. Magn. Mater. 258, 507 (2003).Google Scholar
31 Kim, J. H., Inaba, F., Fukuda, T. and Kakeshita, T., Acta Mater. 54, 493 (2006).Google Scholar
32 Jeong, S., Inoue, K., Inoue, S., Koterazawa, K., Taya, M. and Inoue, K., Mater. Sci. Eng. A 359, 253 (2003).Google Scholar
33 Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Mañosa, L., Planes, A., Suard, E. and Ouladdiaf, B., Phys. Rev. B 75, 104414 (2007).Google Scholar
34 Khan, M., Dubenko, I., Stadler, S. and Ali, N., J. Phys.: Condens. Matter 20, 235204 (2008).Google Scholar
35 Castan, T., Vives, E. and Lindgard, P. A., Phys. Rev. B 60, 7071 (1999).Google Scholar
36 Buchelnikov, V. D., Entel, P., Taskaev, S. V., Sokolovsky, V. V., Hucht, A., Ogura, M., Akai, H., Gruner, M. E. and Nayak, S. K., Phys. Rev. B 78, 184427 (2008).Google Scholar
37 Buchelnikov, V. D., Sokolovsky, V. V., Herper, H. C., Ebert, H., Gruner, M. E., Taskaev, S. V., Khovaylo, V. V., Hucht, A., Dannenberg, A., Ogura, M., Akai, H., Acet, M. and Entel, P., submitted to Phys. Rev. B (2009).Google Scholar
38 Kushida, H., Hata, K., Fukuda, T., Terai, T. and Kakeshita, T., Scripta Mater. 60, 96 (2009).Google Scholar
39 Kakeshita, T., Terai, T., Yamamoto, M. and Fukuda, T., EDP Sciences, Proc. ESOMAT 2009, 04008 (2009).Google Scholar
40 Zheludev, A., Shapiro, S. M., Wochner, P., Schwarz, A., Wall, M. and Tanner, L. E., Phys. Rev. B 51, 11310 (1995).Google Scholar
41 Planes, A., Obrado, E., Comas, A. G. and Mañosa, L., Phys. Rev. Lett. 79, 3926 (1997).Google Scholar
42 Karaka, H. E., Karaman, I., Basaran, B., Lagoudas, D. C., Chumlyakov, Y. I. and Maier, H. J., Acta Mater. 55, 4253 (2007).Google Scholar
43 Karaca, H. E., Karaman, I., Basaran, B., Ren, Y., Chumlyakov, Y. I. and Maier, H. J., Adv. Funct. Mater. 19, 983 (2009).Google Scholar
44 Jaggi, N. K., Rao, K. R. M., Grover, A. K., Gupta, L. C., Vijayaraghavan, R. and Khoi, Le D., Hyperfine Interactions 4, 402 (1978).Google Scholar
45 Brown, P. J., Bargawi, A. Y., Crangle, J., Neumann, K.-U. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 11, 4715 (1999).Google Scholar
46 Wuttig, M., Li, J. and Craciunescu, C., Scr. Metall. Mater. 44, 2393 (2001).Google Scholar
47 Sato, M., Okazaki, T., Furuya, Y., Kishi, Y. and Wuttig, M., Mater. Trans. 45, 204 (2004).Google Scholar
48 Brown, P. J., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K.-U., Oikawa, K., Ouladdiaf, B. and Ziebeck, K. R. A., J. Phys.: Condens. Matter 17, 1301 (2005).Google Scholar
49 Lee, Y., Rhee, J. Y. and Harmon, B. N., Phys. Rev. B 66, 054424 (2002).Google Scholar
50 Shapiro, S. M., unpublished neutron scattering data (2009).Google Scholar
51 Dannenberg, A., Gruner, M. E., Wuttig, M. and Entel, P., EDP Sciences, Proc. ESOMAT 2009, 04004 (2009).Google Scholar
52 Uijttewaal, M. A., Hickel, T., Neugebauer, J., Gruner, M. E. and Entel, P., Phys. Rev. Lett. 102, 035702 (2009).Google Scholar