Published online by Cambridge University Press: 15 February 2011
Utilizing solution imidization, molecular weight and end group control techniques, soluble, fully cyclized polyimides with very high glass transition temperatures have been developed to meet high temperature applications. Mechanistic aspects are investigated for solution imidization by both the polyamic acid route and by the ester-acid route. Polyimides based on pyromellitic dianhydride and a 3F diamine exhibit glass transition temperatures of 420 °C. These polyimides are soluble in polar aprotic solvents and form tough, transparent films which demonstrate mechanical integrity and thermooxidative stability at 700 °F. Various processing routes are explored to demonstrate the viability of these materials in high temperature applications. Details of the synthesis and characterization of these materials will be provided.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.