Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:10:04.091Z Has data issue: false hasContentIssue false

A New Continuum Scalar Model of Facets

Published online by Cambridge University Press:  21 March 2011

Tinghui Xin
Affiliation:
Mechanical Engineering Department, Louisiana State UniversityBaton Rouge, LA 70803-6413, USA
Get access

Abstract

Facets or planar surfaces appear often on crystalline solids, and need to be accurately modeled in studying surface evolution. Here we propose a model in which the radius of curvature of the equilibrium crystal surface is prescribed as a function of crystallographic orientation. In this approach, a facet is represented by the Dirac delta function with the weight of the delta function equal to the width of the facet plane. This model allows sharp corners on solid surfaces, but avoids the non-uniqueness of equilibrium surface profiles that plagues previous facet models. We demonstrate this approach by solving the equilibrium shape and surface energy of triangular crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brailsford, A. D., and Gjostein, N. A., J. Applied Phys. 46, 2390 (1975).Google Scholar
2. Lee, J. K., Dooley, D. W., Graham, D. E., Clough, S. P., White, C. L., and Aaronson, H. I., Surface Sci. 62, 695 (1977).Google Scholar
3. Voorhees, P. W., Coriell, S. R., McFadden, G. B., and Sekerka, R. F., J. Crystal Growth 67, 425 (1984).Google Scholar
4. McFadden, G. B., Wheeler, A. A., Braun, R. J., Coriell, S. R., and Sekerka, R. F., Physical Review E 48, 2016 (1993).Google Scholar
5. Cahn, J. W., and Handwerker, C. A., Materials Sci. and Engineering A162, 83 (1993).Google Scholar
6. Golovin, A. A., Davis, S. H., and Nepomnyashchy, A. A., Physica D 122, 202 (1998).Google Scholar
7. Mullins, W. W., in Metal Surfaces (Am. Soc. Metals, Metals Park, Ohio, 1963), p. 17.Google Scholar
8. Wong, H., Rumschitzki, D., and Maldarelli, C., J. Fluid Mech. 379, 279 (1999).Google Scholar
9. Wong, H., Miksis, M. J., Voorhees, P. W., and Davis, S. H., Acta mater. 48, 1719 (2000).Google Scholar
10. Lee, J. K., and Aaronson, H. I., Surface Sci. 51, 302 (1975).Google Scholar
11. Arbel, E., and Cahn, J. W., Surface Sci. 51, 305 (1975).Google Scholar
12. Stakgold, I., Green's Functions and Boundary Value Problems, (Wiley, New York, 1979).Google Scholar
13. Xin, T., and Wong, H., Acta mater. (submitted) (2000).Google Scholar
14. Xin, T., Master Thesis, Louisiana State University (2001).Google Scholar
15. Cahn, J. W., and Hoffman, D. W., Acta Metallurgica 22, 1205 (1974).Google Scholar
16. Carter, W. C., Roosen, A. R., Cahn, J. W., and Taylor, J. E., Acta metall. mater. 43, 4309 (1995).Google Scholar
17. Taylor, J. E., and Cahn, J. W., Physica D 112, 381 (1998).Google Scholar