Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T20:59:29.075Z Has data issue: false hasContentIssue false

A New Concept of Hydrogen Storage Using Lithium Hydride and Ammonia

Published online by Cambridge University Press:  01 February 2011

Yoshitsugu Kojima
Affiliation:
kojimay@hiroshima-u.ac.jp, Hiroshima University, Institute for Advanced Materials Research, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
Satoshi Hino
Affiliation:
hinos@hiroshima-u.ac.jp, Hiroshima University, Department of Quantum Matter, ADSM, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
Kyoichi Tange
Affiliation:
tange-kyoichi@hiroshima-u.ac.jp, Hiroshima University, Department of Quantum Matter, ADSM, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
Takayuki Ichikawa
Affiliation:
tichi@hiroshima-u.ac.jp, Hiroshima University, Institute for Advanced Materials Research, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
Get access

Abstract

It was indicated that H2 is generated by the reaction of LiH and NH3. After H2 generation, the byproduct LiNH2 was recycled back to LiH under H2 flow condition at 500K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlapbach, L. and Züttel, A., Nature, 414, 353 (2001).Google Scholar
2. Kojima, Y., Kawai, Y., Koiwai, A., Suzuki, N., Haga, T., Hioki, T. and Tange, K., J. Alloys Compd., 421, 204 (2006).Google Scholar
3. Kojima, Y., Kawai, Y., Towata, S., Matsunaga, T., Shinozawa, T. and Kimbara, M., J. Alloys Compd., 419, 256 (2006).Google Scholar
4. Mori, D., Kobayashi, N., Shinozawa, T., Matsunaga, T., Kubo, H., Toh, K. and Tsuzuki, M., J. Japan Inst. Metals, 69, 308 (2005).Google Scholar
5. Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J. and Binder, M., J. Power Sources, 85, 186 (2000).Google Scholar
6. Kojima, Y., Suzuki, K., Fukumoto, K., Kawai, Y., Kimbara, Y., Nakanishi, H. and Matsumoto, S., J. Power Sources, 125, 22 (2004).Google Scholar
7. Bogdanović, B. and Schwickardi, M., J. Alloys Compd., 253–254, 1 (1997).Google Scholar
8. Chen, P., Xiong, Z., Luo, J., Lin, J. and Tan, K.L., Nature, 420, 302 (2002).10.1038/nature01210Google Scholar
9. Leng, H.Y., Ichikawa, T., Hino, S., Hanada, N., Isobe, S. and Fujii, H., J. Phys. Chem. B 108, 8763 (2004).10.1021/jp048002jGoogle Scholar
10. Luo, W., J. Alloy Compd., 381, 284 (2004).Google Scholar
11. Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Noritake, T. and Towata, S., Appl. Phys. A 79, 1765 (2004).Google Scholar
12. Xiong, Z., Wu, G., Hu, J. and Chen, P., Adv. Mater., 16, 1522 (2004).Google Scholar
13. Vajo, J. J., Skeith, S. L. and Mertens, F., J. Phys. Chem. B, 109, 3719 (2005).Google Scholar
14. Hanada, N., Ichikawa, T., Hino, S. and Fujii, H., J. Alloys Compd., 420, 46 (2006)Google Scholar
15. Kojima, Y., Kawai, Y and Haga, T., J. Alloys Compd., 424, 294 (2006).Google Scholar
16. Kariya, N., Fukuoka, A. and Ichikawa, M., Phys. Chem. Chem. Phys., 8, 1724 (2006).Google Scholar
17. Kojima, Y. and Haga, T., Int. J. Hydrogen Energy, 28, 989 (2003).Google Scholar
18. Yin, S.F., Xu, B.Q., Zhou, X.P., Au, C.T., Appl. Catal. A: Gen, 277, 1 (2004).Google Scholar
19.Powder Diffraction File, ” Database Manager Kahmer, T. M., Editor-in-Chief McClune, W. F., Editor of Calculated Patterns Kabekkodu, S. N., Staff Scientist Clark, H. E., International Center for Diffraction Data (JCPDS), Pennsylvania USA (2001).Google Scholar
20. Ichikawa, T., Isobe, S., Hanada, N. and Fujii, H., J. Alloys Compd., 365, 271(2004).Google Scholar
21. CRC Handbook of Chemistry and Physics, Editor-in-Chief R, David, Lide, , 84th edition 20032004, New York, CRC PRESS.Google Scholar
22. Leng, H.Y., Ichikawa, T., Isobe, S., Hino, S., Hanada, N. and Fujii, H., J. Alloys Compd., 404–406, 443 (2005).Google Scholar