Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T01:54:28.981Z Has data issue: false hasContentIssue false

Neutron Studies of Disordered Alloys: a Brief Review/Update

Published online by Cambridge University Press:  22 February 2011

Simon C. Moss*
Affiliation:
Physics Department, Univ. of Houston, Houston, TX 77204-5506
Get access

Abstract

Both neutron and X-ray scattering are used to determine the pair correlation functions (short-range order), the atomic displacements arising from atom size disparity, and the (derived) effective pair interactions in binary alloy solid solutions. This enterprise has taken on a new vitality through concomitant advances in both electronic theory and computer modeling of the atomic arrangements in alloys. An overview of the diffuse scattering formalism will be presented with an emphasis on the ways in which neutron scattering is particularly effective in sorting out the separate contributions to the total scattering pattern. Aspects of contrast variation and enhancement, and the utilization of both elastic and inelastic scattering will be discussed and examples of both past and recent work will be covered, including some future directions. We will also note briefly the relation between local order studies and details of the electronic and the elastic response functions of alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See: Resonant Anomalous Scattering, Materlik, G., Sparks, C. J. and Fischer, K., eds. (North Holland, New York) 1994.Google Scholar
2 Reinhard, L., Robertson, J. L., Moss, S. C., Ice, G. E., Zschack, P. and Sparks, C. J., Phys. Rev. B 45, 2662 (1992).Google Scholar
3 Ice, G. E., Sparks, C. J., Habenschuss, A. and Shaffer, L. B., Phys. Rev. Lett. 68, 853 (1992).Google Scholar
4 Als-Nielsen, J. and Dietrich, O., Phys. Rev. 153, 706, 717 (1967); O. Dietrich and J. Als-Nielsen, Phys. Rev. 153, 711 (1967).Google Scholar
5 Reinhard, L., Schönfeld, B., Kostorz, G. and Bührer, W., Phys. Rev. B 41 1727 (1990).Google Scholar
6 Nicklow, R. M., Vijayaraghavan, P. R., Smith, H. G. and Wilkinson, M. K., Phys. Rev. Lett. 20, 1245 (1968).Google Scholar
7 See, for example, Axe, J. D., Keating, D. T. and Moss, S. C., Phys. Rev. Lett. 36, 530 (1975).Google Scholar
8 See, for example, Warren, B. E., X-ray Diffraction (Dover Publ., New York) 1990.Google Scholar
9 Borie, B. and Sparks, C. J., Acta Cryst. A 27 198 (1971).Google Scholar
10 Dietrich, S. and Fenzl, W., Phys. Rev. B. 39, 8873; 8890 (1989).Google Scholar
11 Schweika, W. in Statics and Dynamics of Alloy Phase Transformations (Proc. of NATO ASI Series B, Physics Vol. 319), P. Turchi, E. A. and Gonis, A., eds. (Plenum Press, New York) 1994.Google Scholar
12 Kostorz, G. in Industrial and Technological Applications of Neutrons (Editrice Compositori, Bologna) 1992, P. 85.Google Scholar
13 Chen, H., Comstock, R. J. and Cohen, J. B., Ann. Rev. Mater. Sci. 9, 51 (1979).Google Scholar
14 Schmatz, W., “Diffuse Scattering in Neutron Diffraction,” Topics in Current Physics 6, ed. Dachs, H. (Springer Berlin/New York) 1978.Google Scholar
15 Krivoglaz, M. A., Theory of X-ray and Thermal Neutron Scattering from Real Crystals, Eng. transi. (Plenum Press, New York) 1969; note also that, under Springer, an English translation of a two-volume update by the late Prof. Krivoglaz will shortly appear.Google Scholar
16 Khachaturyan, A. G., The Theory of Structural Transformations in Solids (Wiley, New York) 1983. 686 Google Scholar
17 de Fontaine, D., “Configurational Thermodynamics of Solid Solutions” in Solid State Phys., Seitz, F., Turnbull, D., eds. 34, 73 (1979).Google Scholar
18 Clapp, P. C. and Moss, S. C., Phys. Rev. 142, 418 (1966).Google Scholar
19 Cook, H. E., J. Phys. Chem. Solids 30, 1097 (1969).Google Scholar
20 Jo, H. S. U. and Moss, S. C., Sol. St. Commun. 30, 365 (1979).Google Scholar
21 Mozer, B., Keating, D. T. and Moss, S. C., Phys. Rev. 175, 868 (1968).Google Scholar
22 Masanskii, J. V., Tokar, V. I. and Grishchenko, T. A., Phys. Rev. B 44, 4647 (1991); V. I. Tokar, Phys. Lett. A 110, 453 (1985).Google Scholar
23 L, Reinhard and Moss, S. C., Ultramicroscopy 52 223 (1993).Google Scholar
24 Gerold, V. and Kern, J., Acta Metall. 35, 393 (1987).Google Scholar
25 Schweika, W. and Haubold, H. G., Phys. Rev. B 37 9240 (1988).Google Scholar
26 Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, (Dover Publ., New York) 1994.Google Scholar
27 Cowley, J. M., Diffraction Physics, (North Holland, New York) 1981.Google Scholar
28 Schwartz, L. H. and Cohen, J. B., Diffraction from Materials, 2nd ed., (Springer, New York) 1987.Google Scholar
29 Caudron, R., Sarfati, M., Barrachin, M., Finel, A., Ducastelle, F. and Solal, F., Physica B 180, 811 ; 822 (1992).Google Scholar
30 Schönfeld, B., “Local Atomic Arrangements in Binary Alloys,” Institut für Angewandte Physik, ETH Zurich (1993) - Habilitations Schrift.Google Scholar
31 Welberry, T. R. and Butler, B. D., J. Appl. Cryst. 27, 265 (1994), and references therein.Google Scholar
32 Vrijen, J., van Royen, E. W., Hoffman, D. W. and Radelaar, S., J. de Phys. C 7, 187 (1977); J. Vrijen, S. RadelaarGoogle Scholar
33 Wagner, W., Poerschke, R., Axmann, A. and Schwahn, D., Phys. Rev. B 21, 3087 (1980).Google Scholar
34 Cohen, J. B., J. Mater. Sci. 4, 1012 (1969).Google Scholar
35 Moss, S. C., Phys. Rev. Lett. 23, 381 (1969).Google Scholar
36 Moss, S. C. and Walker, R. H., J. Appl. Cryst. 8, 96 (1975).Google Scholar
37 Gyorffy, B. L. and Stocks, M., Phys. Rev. Lett. 50, 374 (1983).Google Scholar
38 Chou, H., Shapiro, S. M., Moss, S. C. and Mostoller, M., Phys. Rev. 42, 500 (1990).Google Scholar
39 Cable, J. W., Werner, S. A., Felcher, G. P. and Wakabayashi, N., Phys. Rev. B 29, 1268 (1984).Google Scholar
40 Koga, K., Ohshima, K. and Niimura, N., J. Appl. Phys. Z3, 5457 (1993).Google Scholar
41 Proc. Workshop on First-Order Displacive Phase Transformations, Mat. Sci. and Eng. A 127 (1990) and papers therein.Google Scholar
42 Proc. ICOMAT-92. Wayman, C. M. and Perkins, J., eds. (Monterey Institute of Advanced Studies, P. O. Box 4427, Carmel, CA 93921), 1993 and papers therein.Google Scholar
43 Krumhansl, J. and Yamada, Y., Ref. 41, p. 167.Google Scholar
44 Morris, J. R. and Gooding, R. J., Ref. 42, p. 89.Google Scholar
45 Vul, D. A., Ref. 42, p. 153.Google Scholar
46 Jiang, X., Wochner, P., Moss, S. C. and Zschack, P., Ref. 42, p. 731.Google Scholar
47 Petry, W. et al. , Phys. Rev. B 43, 10933 (1991); A. Heiming et al., Phys. Rev. B 43, 10948 (1991); J. Trampenau et al., Phys. Rev. B 43, 10963 (1991).Google Scholar
48 Shapiro, S. M., Larese, J. Z., Noda, Y., Moss, S. C. and Tanner, L. E., Phys. Rev. Lett. 57, 3199 (1986).Google Scholar
49 Moss, S. C., Keating, D. T. and Axe, J. D., in Phase Transitions, Cross, L. E., ed. (Pergamon Press, New York) 1973, p. 179.Google Scholar
50 Keating, D. T. and LaPlaca, S. L., J. Phys. Chem. Solids 35, 879 (1974).Google Scholar