Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:31:35.820Z Has data issue: false hasContentIssue false

Neutron Scattering Studies of C61H2

Published online by Cambridge University Press:  15 February 2011

D. A. Neumann
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. E. Fischer
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104
J. R. D. Copley
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
P. A. Heiney
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104
J. J. Rush
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
R. M. Strongin
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104
L. Brard
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104
Amos B. Smith III
Affiliation:
University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

We report neutron diffraction measurements of orientational ordering, and inelastic neutron scattering measurements of the inter- and intra-molecular excitations, for the 6:5 annulene isomer (C3 symmetry) of C61H2. We confirm previous x-ray measurements[1] which have shown that above 290K this isomer has an fcc structure, with the molecules orientationally disordered such that the methylene groups preferentially occupy “octahedral” sites. Below 290K, the diffraction pattern can be indexed on a simple cubic lattice, in direct analogy with the orientational ordering transition of C60. The observed low energy dynamics reflect this behavior. A peak corresponding to molecular librations is observed below the transition, at ∼2.5meV, while above the transition the peak collapses into a quasielastic line characteristic of rotational diffusion. The intramolecular spectra show several pronounced peaks. The assignments of these modes are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lommen, A.N., Heiney, P.A., Vaughan, G.B.M., Stephens, P.W., Liu, D., Li, D., Smith, A.L., McGhie, A.R., Strongin, R.M., Brard, L., and Smith, A.B. III, Phys. Rev. B49, 12572 (1994).Google Scholar
[2] Heiney, P.A., Fischer, J.E., McGhie, A.R., Romanow, W.J., Denenstein, A.M., McCauley, J.P. Jr., Smith, A.B. III, and Cox, D.E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
[3] Vaughan, G.B.M., Heiney, P.A., Cox, D.E., McGhie, A.R., Jones, D.R., Strongin, R.M., Cichy, M.A., and Smith, A.B. III, Chem. Phys. 168, 185 (1992).Google Scholar
[4] Copley, J.R.D., Neumann, D.A., Cappelletti, R.L., and Kamitakahara, W.A., J. Phys. Chem. Solids 53, 1353 (1992).Google Scholar
[5] Suzuki, T., Li, Q., Khemani, K.C., and Wudl, F., J. Am. Chem. Soc. 114, 7301 (1992).Google Scholar
[6] Stalick, J.K., these proceedings.Google Scholar
[7] Copley, J.R.D. and Udovic, T.J., J. Res. NIST 98, 71 (1993).Google Scholar
[8] Ricco, M., Cristofolini, L., Viola, G., and Dalcanale, E., J. Phys. Chem. Solids 54, 1487 (1993).Google Scholar
[9] Moret, R., Ravy, S., and Godard, J.-M., J. Phys. I France 2, 1699 (1992).Google Scholar
[10] David, W.I.F., Ibberson, R.M., Dennis, T.J.S., Hare, J.P., and Prassides, K., Europhys. Lett. 18, 219 (1992).Google Scholar
[11] Cardini, G., Bini, R., Salvi, P.R., Schettino, V., Klein, M.L., Strongin, R.M., Brard, L., and Smith, A.B. III, J. Phys. Chem. 98, 9966 (1994).Google Scholar
[12] Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.P., J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar