Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:32:36.222Z Has data issue: false hasContentIssue false

The Need for Controlled Heterogeneous Nucleation in Ceramic Processing

Published online by Cambridge University Press:  28 February 2011

Gary L. Messing
Affiliation:
The Pennsylvania State University, University Park, PA 16802
James L. Mcardle
Affiliation:
The Pennsylvania State University, University Park, PA 16802
Richard A. Shelleman
Affiliation:
The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The principles underlying controlled heterogeneous nucleation are reviewed. The application of these principles for the preparation of ceramic powders with equiaxed morphology and narrow size distribution is illustrated with examples from the literature and our recent work on alumina. It is concluded that controlled heterogeneous nucleation will be an important factor in fully realizing the benefits of chemically derived polycrystalline ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clabaugh, W. S., Swiggard, E. M. and Gilchrist, R., J. Res. Natl. Bur. Std. 56 (5), 289 (1956).Google Scholar
2. Mazniyasni, K. S., Dolloff, R. T. and IISmith, J. S., J. Am. Ceram. Soc. 52 (10) 523 (1969).CrossRefGoogle Scholar
3. West, R., in Ultrastructure Processing of Ceramics, Glasses and Composites edited by Hench, L. L. and Ulrich, D. R. (J. Wiley and Sons, NY, 1984), p. 235.Google Scholar
4. LaMer, V. K. and Dinegar, R. H., J. Am. Chem. Soc. 72 (11), 4847 (1950).Google Scholar
5. Matijevic, E., Ultrastructure Processing of Ceramics, Glasses and Composites edited by Hench, L. L. and Ulrich, D. R. (J. Wiley and Sons, NY, 1984), p. 334.Google Scholar
6. Barringer, E. A. and Bowen, H. K., J. Am Ceram. Soc. 65 (12), C199 (1982).CrossRefGoogle Scholar
7. LaMer, V. K., Ind. Eng. Chem. 44 (6), 1270 (1952).Google Scholar
8. Turnbull, D. and Vonnegut, B., Ind. Eng. Chem. 44 (6) 1292 (1952).Google Scholar
9. Walton, A. G., The Formation and Properties of Precipitates (Robert Krieger Publishing Co., Huntington, NY, 1979), p. 8.Google Scholar
10. Kacirek, H. and Lechert, H., J. Phys. Chem. 79 (15), 1589 (1975).Google Scholar
11. Inoue, H., Komeya, K. and Tsuge, A., J. Am Ceram. Soc. 65 (12), C205 (1982).Google Scholar
12. Lange, F. F., J. Am. Ceram. Soc. 62 (7–8), 428 (1979).Google Scholar
13. Lange, F. F., Am. Ceram. Soc. Bull. 62 (12) 1369 (1983).Google Scholar
14. Morgan, P. E. D., J. Mat. Sci. Lett. 15 791 (1980).CrossRefGoogle Scholar
15. Jatkar, A. D., Cutler, I. B., Virkar, A. V. and Gordon, R. S., Mat. Sci. Res. 11 421 (1978).Google Scholar
16. Heavens, S. W., J. Mat. Sci. 19 2223 (1984).CrossRefGoogle Scholar
17. Eda, K., Inada, M. and Matsuoka, M., J. Appl. Phys. 54 (2) 1095 (1983).Google Scholar
18. Lacour, C. and Paulus, M., Phys. Stat. Solid (a) 27 (2) 441 (1975)Google Scholar
19. Hennings, D., Janssen, R. and Reynen, P. in Sintering - Theory and Practice – II, eds., Palmour, H. and Kuczynski, G., Plenum Press, New York (1986).Google Scholar
20. Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67 (11) C230 (1984); 68 (9) 500 (1985).CrossRefGoogle Scholar
21. Shelleman, R. A., Messing, G. L. and Kumagai, M., J. Non-Cryst. Solids 48 (1986).Google Scholar
22. McArdle, J. L. and Messing, G. L., J. Am. Ceram. Soc. 69 (5) (1986).Google Scholar
23. Suwa, Y., Roy, R. and Komarneni, S., J. Am. Ceram. Soc. 68 (9) C238 (1985).Google Scholar
24. McArdle, J. L. and Messing, G. L. (unpublished work).Google Scholar
25. David, L. and Takemori, T., J. Am. Ceram. Soc. accepted for publication (1986).Google Scholar