Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:46:37.305Z Has data issue: false hasContentIssue false

Nano-Sized Semiconducting Oxide Powders for Thick Film Gas Sensors: From Powder Processing to Environmental Monitoring Devices

Published online by Cambridge University Press:  21 February 2011

Enrico Traversa
Affiliation:
Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Rome, Italy, traversa@uniroma2.it
Maria Cristina Carotta
Affiliation:
INFM, Department of Physics, University of Ferrara, 44100 Ferrara, Italy
Giuliano Martinelli
Affiliation:
INFM, Department of Physics, University of Ferrara, 44100 Ferrara, Italy
Get access

Abstract

This paper reports the study of semiconducting oxides to develop gas sensors in thick-film form for use in atmospheric pollutant monitoring devices. The investigation was achieved with the following steps: selection of the suitable oxides and of their most appropriate processing method to obtain nano-sized powders, fabrication using screen-printing technology of thick-film sensors from these powders, and electrical measurements in laboratory and in the field. Chemical routes such as sol-gel techniques and thermal decomposition of heteronuclear complexes have been used to prepare nano-sized powders of n-type (TiO2) and p-type (LaFeO3 and SmFeO3) semiconducting oxides. Thick-film gas sensors have been produced by screen-printing technology. Pastes have been prepared and printed on laser precut 96% alumina substrates, each 2×2 mm element being provided with a heater, comb-type Au contacts and a Pt-100 resistor for controlling the operating temperature. The firing of the films has been performed in conditions able to keep grain size at nanometer level. Electrical responses to some major polluting gases (CO, NO, NO2 and O3) have been tested in laboratory and in the field, and compared with results of the analytical techniques approved by the international standards.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiang, Y.M., J. Electroceram. 1, 205 (1997).Google Scholar
2. Gleiter, H., Prog. Mater. Sci 33, 223 (1989).Google Scholar
3. Wu, N.L., Wang, S.Y., and Rusakova, I.A., Science 285, 1375 (1999).Google Scholar
4. Shimizu, Y. and Egashira, M., MRS Bull. 24 (6), 1824 (1999).Google Scholar
5. Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Sensors and Actuators B 3, 147 (1991); D.E. Williams, ibid., 57, 1 (1999).Google Scholar
6. Schweizer-Berberich, M., Zheng, J.G., Weimar, U., Gdpel, W., Barsan, N., Pentia, E., and Tomescu, A., Sensors and Actuators B 31, 71 (1996); G. Sberveglieri, P. Nelli, L. Sangaletti, M. Ferroni, V. Guidi, G. Martinelli, G. Marca, and L.E. Depero, ibid., 36, 381 (1996); Z. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, and C.C. Liu, ibid., 52, 188 (1998); M.J. Willett, V.N. Burganos, C.D. Tsakiroglou, and A.C. Payatakes, ibid., 53, 76 (1998).Google Scholar
7. Dong, L.F., Cui, Z.L., and Zhang, Z.K., Nanostructured Mater. 8, 815 (1997); D.G. Rickerby, M.C. Horrillo, J.P. Santos, and P. Serrini, ibid., 9, 43 (1997); H. Lin, C. Keng, and C. Tung, ibid., 9, 747 (1997); D.G. Rickerby and M.C. Horrillo, ibid., 10, 357 (1998).Google Scholar
8. Terwilliger, C.D. and Chiang, Y.M., Nanostructured Mater. 2, 37 (1993).Google Scholar
9. Hahn, H., Nanostructured Mater. 2, 251 (1993).Google Scholar
10. Hague, D.C. and Mayo, M.J., J. Am. Ceram. Soc. 77, 1957 (1994).Google Scholar
11. Ying, J.Y. and Sun, T., J. Electroceram. 1, 219 (1997).Google Scholar
12. Rao, C.N.R., J. Mater. Chem. 9, 1 (1999).Google Scholar
13. Kakihana, M., J. Sol-Gel Sci. Technol. 6, 7 (1996).Google Scholar
14. Martinelli, G. and Carotta, M.C., Sensors and Actuators B 15–16, 363 (1993); 23, 157 (1995).Google Scholar
15. Carotta, M.C., Butturi, M.A., Martinelli, G., Sadaoka, Y., Nunziante, P., and Traversa, E., Sensors and Actuators B 44, 590 (1997); A. Chiorino, G. Ghiotti, M.C. Carotta, and G. Martinelli, ibid., 47, 205 (1998); M.C. Carotta, G. Martinelli, Y. Sadaoka, P. Nunziante, and E. Traversa, ibid., 48, 270 (1998); M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, ibid., 58, 310 (1999).Google Scholar
16. Traversa, E., Villanti, S., Gusmano, G., Aono, H., and Sadaoka, Y., J. Am. Ceram. Soc. 82, 2442 (1999).Google Scholar
17. Prudenziati, M. and Morten, B., Sensors and Actuators 10, 65 (1986).Google Scholar
18. White, N.M. and Turner, J.D., Meas. Sci. Technol., 8, 1 (1997).Google Scholar
19. Honoré, M., Lenaerts, S., Desmet, J., Huyberechts, G., and Roggen, J., Sensors and Actuators B 19, 621 (1994); J. Mizsei, ibid., 23, 173 (1995); A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, and W. Gopel, ibid., 43, 45 (1997); Y. Shimizu, T. Maekawa, Y. Naka-mura, and M. Egashira, ibid., 46, 163 (1998); J.L. Solis and V. Lantto, ibid., 48, 322 (1998).Google Scholar
20. Ansari, S.G., Boroojerdian, P., Sainkar, S.R., Karekar, R.N., Aiyer, R.C., and Kulkami, S.K., Thin Solid Films 295, 271 (1997).Google Scholar
21. Williams, G. and Coles, G.S.V., J. Mater. Chem. 8, 1657 (1998); MRS Bull. 24 (6), 25-29 (1999).Google Scholar
22. Diéguez, A., Romano-Rodríguez, A., Alay, J.L., Morante, J.R., Barsan, N., Kappler, J., Weimar, U., and Göpel, W., in Techn. Digest of The 7th Int. Meet. on Chemical Sensors (Int. Academic Publishers, Beijing, 1998) p. 389.Google Scholar
23. Lee, D.S., Han, S.D., Huh, J.S., and Lee, D.D., Sensors and Actuators B 60, 57 (1999).Google Scholar
24. Martinelli, G., Carotta, M.C., Ferroni, M., Sadaoka, Y., and Traversa, E., Sensors and Actuators B 55, 99 (1999); E. Traversa, Y. Sadaoka, M.C. Carotta, and G. Martinelli, ibid., in press; M.C. Carotta, G. Martinelli, L. Crema, M. Gallana, M. Merli, G. Ghiotti, and E. Traversa, ibid., submitted.Google Scholar
25. Martinelli, G., Carotta, M.C., Traversa, E., and Ghiotti, G., MRS Bull. 24 (6), 3036 (1999).Google Scholar
26. Oyabu, T., Matsuura, Y., and Kimura, H., Sensors and Actuators B 36, 308 (1996).Google Scholar
27. Wiegleb, G. and Heitbaum, J., Sensors and Actuators B 17, 93 (1994).Google Scholar
28. Nakagawa, H., Okazaki, S., Asakura, S., Fukuda, K., Akimoto, H., Takahashi, S., and Shigemori, T., in Techn. Digest of The 7th Int. Meet. on Chemical Sensors (Int. Academic Publishers, Beijing, 1998) p. 187.Google Scholar
29. Sakamoto, M., Komoto, Y., Hojo, H., and Ishimori, T., Nippon Kagaku Kaishi 1990, 887.Google Scholar
30. Nakayama, S. and Sakamoto, M., J. Ceram. Soc. Jpn. 100, 342 (1992); M. Sakamoto, K. Matsuki, R. Ohsumi, Y. Nakayama, Y. Sadaoka, S. Nakayama, N. Matsumoto, and H. Okawa, ibid., 100, 1211 (1992).Google Scholar
31. Sakamoto, M., Igoshi, T., Sato, M., Matsushima, S., Miwa, M., Aono, H., and Sadaoka, Y., J. Alloys and Compounds 260, 59 (1997).Google Scholar
32. Aono, H., Tsuzaki, M., Kawaura, A., Sakamoto, M., Traversa, E., and Sadaoka, Y., Chem. Lett. 1999, 1175.Google Scholar
33. Hasegawa, E., Aono, H., Igoshi, T., Sakamoto, M., Traversa, E., and Sadaoka, Y., J. Alloys and Compounds 287, 150 (1999).Google Scholar
34. Sadaoka, Y., Watanabe, K., Sakai, Y., and Sakamoto, M., J. Ceram. Soc. Jpn. 103, 519 (1995); J. Alloys and Compounds 224, 194 (1995).Google Scholar
35. Gallagher, P.K., Mater. Res. Bull. 3, 225 (1968).Google Scholar
36. Traversa, E., Sakamoto, M., and Sadaoka, Y., Particulate Sci. Technol. 16, 185 (1998).Google Scholar
37. Sadaoka, Y., Traversa, E., and Sakamoto, M., J. Mater. Chem. 6, 1355 (1996).Google Scholar
38. Sadaoka, Y., Traversa, E., Nunziante, P., and Sakamoto, M., J. Alloys and Compounds 261, 182 (1997).Google Scholar
39. Sakamoto, M., Nunziante, P., Traversa, E., Matsushima, S., Miwa, M., Aono, H., and Sadaoka, Y., J. Ceram. Soc. Jpn. 105, 963 (1997).Google Scholar
40. Traversa, E., Nunziante, P., Sakamoto, M., Sadaoka, Y., and Montanari, R., Mater. Res. Bull. 33, 673 (1998).Google Scholar
41. Sadaoka, Y., Aono, H., Traversa, E., and Sakamoto, M., J. Alloys and Compounds 278, 135 (1998).Google Scholar
42. Traversa, E., Sakamoto, M., and Sadaoka, Y., J. Am. Ceram. Soc. 79, 1401 (1996).Google Scholar
43. Carotta, M.C., Butturi, M.A., Martinelli, G., Vona, M.L. Di, Licoccia, S., and Traversa, E., Electron Technol. 33, in press (2000).Google Scholar
44. Traversa, E., Vona, M.L. Di, Licoccia, S., Sacerdoti, M., Carotta, M.C., Gallana, M., and Martinelli, G., J. Sol-Gel Sci. Technol., in press.Google Scholar
45. Traversa, E., Nunziante, P., Sakamoto, M., Sadaoka, Y., Carotta, M.C., and Martinelli, G., J. Mater. Res. 13, 1335 (1998).Google Scholar
46. Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R., J. Am. Ceram. Soc. 75, 3408 (1992).Google Scholar
47. Musci, M., Notaro, M., Curcio, F., Casale, C., and Michele, G. De, J. Mater. Res. 7, 2846 (1992).Google Scholar
48. Yamazoe, N. and Miura, N., IEEE Trans. Compon., Packag., Manuf. Technol., Part A 18, 252 (1995).Google Scholar
49. Traversa, E., J. Am. Ceram. Soc. 78, 2625 (1995).Google Scholar
50. Traversa, E., in Progress in Ceramic Basic Science: Challenge Toward the 21st Century, edited by Hirai, T., Hirano, S.i., and Takeda, Y. (The Ceram. Soc. of Japan, Tokyo, 1996) p. 145.Google Scholar
51. Traversa, E., Nunziante, P., Sadaoka, Y., Carotta, M.C., and Martinelli, G., in Proc. of the 11th Europ. Microelectronics Conf (Venice, 1997) p. 52.Google Scholar
52. Carotta, M.C., Casale, M.C., Crema, L., Ferroni, M., Merli, M., Martinelli, G., and Traversa, E., in Proc. 3rd Conf on Sensors and Microsystems, edited by D'Amico, A. and Natale, C. Di (World Scientific, Singapore, 1999) p. 143.Google Scholar