Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:46:40.986Z Has data issue: false hasContentIssue false

Nanosecond Resolved Temperature Measurements Following Pulsed Laser Irradiation

Published online by Cambridge University Press:  26 February 2011

Michael O. Thompson*
Affiliation:
Department of Materials Science, Cornell University, Ithaca, NY 14853
Get access

Abstract

A transient resistance technique has been developed which allows monitoring the temperature of a thin film sample at a fixed depth from the surface following pulsed laser irradiation. The technique utilizes the temperature dependence of a thin, electrically insulated, semiconducting or metallic layer. Temperature determinations with nanosecond resolution, an absolute accuracy of ±50 K, and a relative accuracy of ±5 K are demonstrated. Combined with simultaneous interface position and velocity measurements, the undercooling at the interface during rapid solidification may be obtained. Preliminary results using this technique during the solidification of thin Ge films are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For a review of the recent literature, see other volumes in this series, Mat. Res. Soc. Symp. Proc. 35, 51, 74 (19841987)Google Scholar
2 see, for example Tsao, J.Y., Peercy, P.S. and Thompson, Michael O., J. Mater. Res. 2, 91 (1987).Google Scholar
3 Broughton, J.J. and Abraham, F.F., J. Cryst. Growth 75, 613 (1986).Google Scholar
4 Compaan, Alvin, J. Mat. Res. Soc. Proc. 35, 65 (1985)Google Scholar
5 Larson, B.C., White, C.W., Noggle, T.S., Barhorst, J.F. and Mills, D.M., Appl. Phys. Lett. 42, 282 (1983).Google Scholar
6 Lampert, M.O., Koebel, J.M. and Siffert, P., J. Appl. Phys. 52, 4975 (1981).Google Scholar
7 Malvezzi, A.M., Kruz, H. and Bloembergen, N., J. Mat. Res. Soc. Proc. 35, 75 (1985)Google Scholar
8 Compaan, A. and Trodahl, H.J., Phys. Rev. B 29, 793 (1984).Google Scholar
9 Linde, D. Von der, Fabricius, N., Danielzik, B. and Bonkhofer, T., J. Mat. Res. Soc. Proc. 74, 103 (1987).Google Scholar
10 Baeri, P., Campisano, S.U., Rimini, E. and Zhang, Jing Ping, Appl. Phys. Lett. 45, 398 (1984).Google Scholar
11 Galvin, G.J., Thompson, M.O., Mayer, J.W., Hammond, R.B., Paulter, N. and Peercy, P.S., Phys. Rev. Lett. 48, 33 (1982); Michael O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy and R.B. Hammond, Appl. Phys. Lett. 42, 445 (1983).Google Scholar
12 CRC Handbook of Chemistry and Physics, (CRC Press, Florida, 1984), p. F133.Google Scholar
13 Thurmond, C.D., J. Electrochem. Soc. 122, 1133 (1975).Google Scholar
14 Jacoboni, C., Canali, C., Ottaviani, G. and Quaranta, A. Alberigi, Solid-State Electronics 20, 77 (1977).Google Scholar
15 Putley, E.H. and Mitchell, W.H., Proc. Phys. Soc. (London) A72, 193 (1958).CrossRefGoogle Scholar
16 Progress in Semiconductors, Gibson, A.F., ed., (Heywood & Company, London, 1960), p. 259.Google Scholar
17 Glazov, V.M., Chizhevskaya, S.N. and Glagoleva, N.N., Liquid Semiconductors, (Plenum Press, New York, 1969), chap. 3.Google Scholar