Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:36:29.907Z Has data issue: false hasContentIssue false

Nanopipes and Inversion Domains in High-Quality GaN Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
W. T. Young
Affiliation:
University of Bristol, H. H. Wills Physics Laboratory, Bristol BS8 1TL, UK
D. Cherns
Affiliation:
University of Bristol, H. H. Wills Physics Laboratory, Bristol BS8 1TL, UK
J. W. Steeds
Affiliation:
University of Bristol, H. H. Wills Physics Laboratory, Bristol BS8 1TL, UK
S. Nakamura
Affiliation:
Nichia Chemical Industries, 491 Oka, Kaminaka, Anan, Tokushima 774, Japan
Get access

Abstract

In this paper we report that, in addition to dislocations, two other types of defects are observed in high quality GaN thin films. These defects have a filamentary nature, are oriented along the <0001> direction. and may not be easily distinguished from the pure dislocations. Using a combination of conventional electron microscopy with convergent beam electron diffraction techniques we show that one of these types of dislocations consist of nanopipes, which are coreless dislocations with Burgers vectors <0001>. The other type of observed defects consist of inversion domains with [0001 ] orientation within the [0001] matrix. The origin of the inversion domains and nanopipes is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lester, S.D., Ponce, F.A., Craford, M.G., Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
2. Ponce, F. A., Major, J. S. Jr., Plano, W. E., Welch, D. F., Appl. Phys. Lett., 65, 2303 (1994).Google Scholar
3. Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
4. Ning, X. J., Chien, F. R., Pirouz, P., Yang, J. W., and Khan, M. A., Mater, J.. Res. 11, 580 (1996).Google Scholar
5. Ponce, F. A., Cherns, D., Young, W. T., and Steeds, J. W., Appl. Phys. Lett. 69, 770 (1996).Google Scholar
6. Nakamura, S., Jpn. J. Appl. Phys. 30, 1620 (1991).Google Scholar
7. Cherns, D., Young, W. T., Steeds, J. W., Ponce, F. A., and Nakamura, S., J. Crystal Growth (1997), in press.Google Scholar
8. Frank, F. C., Acta Cryst. 4, 497 (1951).Google Scholar
9. Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Cryst, J.. Growth 151, 396 (1995).Google Scholar
10. Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
11. Romano, L. T. and Northrup, J. E., MRS Proc. 449, 423 (1996). (These Proceedings).Google Scholar
12. Chems, D., Young, W. T., Steeds, J. W., Ponce, F. A., and Nakamura, S., (1997), submitted.Google Scholar
13. Northrup, J. E., Neugebauer, J., and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar