Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:49:14.989Z Has data issue: false hasContentIssue false

Nanomodified Endotracheal Tubes: Spatial Analysis of Reduced Bacterial Colonization in a Bench Top Airway Model

Published online by Cambridge University Press:  30 March 2012

Mary C. Machado
Affiliation:
School of Engineering, Brown University, Providence RI, 02912, USA
Keiko M. Tarquinio
Affiliation:
Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence RI, 02903, USA
Thomas J. Webster
Affiliation:
School of Engineering and Department of Orthopaedics, Brown University, Providence RI, 02912, USA.
Get access

Abstract

Ventilator associated pneumonia (VAP) is a serious and costly clinical problem. Specifically, receiving mechanical ventilation for over 24 hours increases the risk of VAP and is associated with high morbidity, mortality and medical costs. Cost effective endotracheal tubes (ETTs) that are resistant to bacterial infection could help prevent this problem. The objective of this study was to determine differences in the growth of Staphylococcus aureus (S. aureus) on nanomodified and unmodified polyvinyl chloride (PVC) ETTs under dynamic airway conditions. PVC ETTs were modified to have nanometer surface features by soaking them in Rhizopus arrhisus, a fungal lipase. Twenty-four hour experiments (supported by computational models) showed that air flow conditions within the ETT influenced both the location and concentration of bacterial growth on the ETTs especially within areas of tube curvature. More importantly, experiments revealed a 1.5 log reduction in the total number of S. aureus on the novel nanomodified ETTs compared to the conventional ETTs after 24 hours of air flow. This dynamic study showed that lipase etching can create nano-rough surface features on PVC ETTs that suppress S. aureus growth and, thus, may provide clinicians with an effective and inexpensive tool to combat VAP.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brilli, R.J., Sparling, K.W., Lake, M.R., Jt. Comm. J. Qual. Patient Saf. 34, 629638, (2008).Google Scholar
2. Richards, M.J., Edwards, J.R., Culver, D.H., Gaynes, R.P., National Nosocomial Infections Surveillance System, Pediatrics 103(4), e39(1999).Google Scholar
3. Baltimore, R.S., Pediatrics 112, 14201421 (2003).CrossRefGoogle Scholar
4. Gaynes, R. and Edwards, J.R., Clin. Infect. Dis. 41, 848854 (2005).Google Scholar
5. Koerner, R.J., Hosp, J.. Infect. 35, 8389 (1997).Google Scholar
6. Carsons, S. E., Fibronectin in Health and Disease. (CRC Press Inc., New York, 1989) p. 106.Google Scholar
7. Machado, M.C., Cheng, D., Tarquinio, K.M., Webster, T.J., Pediatr. Res. 67(5), 500504 (2010).CrossRefGoogle Scholar
8. Klein, J., Proc. Natl. Acad. Sci. U.S.A. 104, 20292030 (2007).CrossRefGoogle Scholar
9. Liu, H., and Webster, T.J., Biomaterials 28, 354369 (2006).CrossRefGoogle Scholar
10. Lichter, J.A., Thompson, M.T., Delgadillo, M., Nishikawa, T., Rubner, M.F., Van Vliet, K.J., Biomacromolecules 9(6), 15711578 (2008).Google Scholar
11. Diaz, C., Cortizo, M.C., Schilardi, P.L., Saravia, S.G.G., Mele, M.A.F.L., Mat. Res. 10(1), 1114 (2007).CrossRefGoogle Scholar
12. Berger, S.A., and Talbot, L., Annu. Rev. Fluid Mech. 15, 461512 (1983).CrossRefGoogle Scholar
13. Rusconi, R., Lecuyer, S., Guglielmini, L., Stone, H.A., Soc, J. R.. Interface 7, 12931299 (2010).Google Scholar
14. Rusconi, R., Lecuyer, S., Autrusson, N., Guglielmini, L., Stone, H. A., Biophysical Journal 100, 13921399 (2011).Google Scholar
15. Hartmann, M., Guttmann, J., Muller, B., Hallmann, T., Geiger, K., Technol. Health Care 7, 359370 (1999).CrossRefGoogle Scholar
16. Seil, J.T., Rubien, N.M., Webster, T.J., Tarquinio, K.M., J. Biomed. Mater. Res. B 9B(1), 17 (2011).Google Scholar
17. Dellinger, R., Jean, P., Cinel, S., Crit Care. 11, R26 (2007).Google Scholar
18. Tortora, G., Funke, R.B. and Case, L.C., Microbiology; An Introduction. (Addison-Wesley Longman, Inc., New York, 1998).Google Scholar
19. Davis, D. and Eisen, G., Bacterial Physiology: Microbiology, 2nd ed., (Harper and Row, Maryland, 1973) p.96-97.Google Scholar
20. Aniansson, G., Andersson, B., Lindstedt, R., Svanborg, C., Microb Pathogen 8, 315323 (1990).Google Scholar
21. Meisel, H., BioFactors 21, 5561 (2004).CrossRefGoogle Scholar