Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T01:52:07.695Z Has data issue: false hasContentIssue false

A Nanodamascene Process to be used as a Building Block for Nanodevices

Published online by Cambridge University Press:  01 February 2011

Christian Dubuc
Affiliation:
dubuc@emt.inrs.ca, University of Sherbrooke, Electrical engineering, 2500 boul. de l'Universite, Sherbrooke, J1K 2R1, Canada, 450-929-8267
Jacques Beauvais
Affiliation:
jacques.beauvais@usherbrooke.ca, University of Sherbrooke, Department of Electrical Engineering, 2500 boul. de l'Universite, Sherbrooke, Quebec, J1K 2R1, Canada
Dominique Drouin
Affiliation:
dominique.drouin@usherbrooke.ca, University of Sherbrooke, Department of Electrical Engineering, 2500 boul. de l'Universite, Sherbrooke, Quebec, J1K 2R1, Canada
Get access

Abstract

We report a single-electron transistor concept and its related process enabling the fabrication of ultrasmall junction capacitance. The method utilizes a nanodamascene approach where trenches in silicon oxide are covered with a filling material and planarized with chemical mechanical polishing. Single-electron transistors fabricated with this approach were characterized up to 433 K and demonstrated that the nanodamascene process has high resolution, is relatively simple and is highly scalable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Likharev, K., Proc. IEEE 87, 606 (1999).Google Scholar
2. Takahashi, Y., Ono, Y., Fujiwara, A., and Inokawa, H., J. Phys.: Condens. Matter 14, R995 (2002).Google Scholar
3. Xiaodan, P. and Broers, A., J. Appl. Phys. 71, 6189 (1992).Google Scholar
4. Patrick, W. J., Guthrie, W. L., Standley, C. L., and Schiable, P. M., J. Electrochem. Soc. 138, 1778 (1991).Google Scholar
5. O'Keeffe, T. W. and Handy, R. M., Solid State Electronics 11, 261 (1968).10.1016/0038-1101(68)90087-7Google Scholar
6. Allee, D. R. and Broers, A., Appl. Phys. Lett. 57, 2271 (1990).10.1063/1.103909Google Scholar
7. Barnes, J. R., Hoole, A. C. F., Murrel, M. P., Welland, M. E., Broers, A. N., Bourgoin, J. P., Biebuyck, H., Johnson, M. B. and Michel, B., Appl. Phys. Lett. 67, 1538 (1995).Google Scholar
8. Averin, D.V. and Likharev, K.K., in Mesoscopic Phenomena in Solids, Altshuler, B., P., Lee, R., Webb, Eds. (Elsevier, Amsterdam, 1991), pp. 173271.Google Scholar
9. Ingold, G.L. and Nazarov, Y.V., in Single Charge Tunneling, Grabet, H., Devoret, M.H., Eds. (Plenum, New York, 1992), pp. 21108.Google Scholar
10. Toriumi, A., Uchida, K., Ohba, R., and Koga, J., Physica B 272, 522 (1999).Google Scholar
11. Park, K.S., Kim, S.-J., Baek, I.-B., Lee, W.-H., Kang, J.-S., Jo, Y.-B., Lee, S. D., Lee, C.-K., Choi, J.-B., Kim, J.-H., Park, K.-H., Cho, W.-J., Jang, M.-G., and Lee, S.-J., IEEE Trans. Nanotechnol. 4, 242 (2005).Google Scholar