Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:05:21.193Z Has data issue: false hasContentIssue false

Nanocharacterization of Relaxation Properties in Organic Thin Film Electronic Materials

Published online by Cambridge University Press:  26 February 2011

Tomoko Gray
Affiliation:
torara@u.washington.edu, United States
Rene Overney
Affiliation:
roverney@u.washington.edu, University of Washington, Benson Hall, Box 351750, Seattle, WA, 98195, United States
Get access

Abstract

With increased molecular complexity of organic thin film electronics, novel characterization methods are required to provide nanoscale material property information. Particularly important in polymer thin film electronics are methods characterizing the mobility properties of materials that are in amorphous unsteady states. If the unsteady nature of materials is paired with dimensional and interfacial constraints in anisotropic systems, such as thin films, it produces material systems of great challenges with enormous engineering potentials. Two examples are addressed in this paper, involving desired and undesired supramolecular alignments in polymer thin films, the spectral stability in organic blue-light emitting diodes and the electro-optical (EO) activity in organic non-linear optical (NLO) materials, in conjunction with novel scanning probe microscopy (SFM) based characterization tools. The nanoscopic methods discussed here, i.e., shear modulation force microscopy (SM-FM), and nanoscale isothermal friction analysis (NIFA), offer a quantitative approach for investigating the mobility/stability of organic semiconductor polymer films. Thereby, local properties such as energy barriers for sub-molecular motions (relaxations) and critical transition temperatures can be directly inferred from organic films that are used in actual electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ma, H., Liu, S., Luo, J., Suresh, S., Liu, L., Kang, S. H., Haller, M., Sassa, T., Dalton, L. R., and Jen, A. K.-Y., Adv. Funct. Mater. 12, 565 (2002).Google Scholar
[2] Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A., Garner, S., Chem, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., and Jen, A., J. Mater. Chem. 9, 1905 (1999).Google Scholar
[3] Marks, T. J. and Ratner, M. A., Angrew. Chem. Int. Ed. Engl. 34, 155 (1995).Google Scholar
[4] Heeger, A. J., Angrew. Chem. Int. Ed. Engl. 40, 2591 (2001).Google Scholar
[5] Ma, H., Jen, A. K.-Y., and Dalton, L. R., Adv. Mater. 14, 1339 (2002).Google Scholar
[6] Marder, S. R. and Perry, J. W., Science 263, 1706 (1994).Google Scholar
[7] Marder, S. R., Beratan, D. N., and Cheng, L. T., Science 252, 103 (1991).Google Scholar
[8] Robinson, B. H. and Dalton, L. R., J. Phys. Chem. A 104, 4785 (2000).Google Scholar
[9] Kajzar, F., Lee, K.-S., and Jen, A. K.-Y., Adv. Polym. Sci. 161 (Polymers for Photonics Applications II), 1 (2003).Google Scholar
[10] Dalton, L. R., Robinson, B. H., Jen, A., Steier, W. H., and Nielsen, R., Optical Materials 21, 19 (2002).Google Scholar
[11] Bernius, M. T., Inbasekaran, M., O'Brian, J., and Wu, W., Adv. Mater. 12, 1737 (2000).Google Scholar
[12] Frommer, J. and Overney, R. M., in ACS Symposium Series, edited by Overney, R. M. (Oxford Univ. Press, 2001), Vol.781.Google Scholar
[13] Scherf, U. and List, E. J. W., Adv. Mater. 14, 477 (2002).Google Scholar
[14] Zhang, X., Jenekhe, S. A., and Perlstein, J., Chem. Mater. 8, 1571 (1996).Google Scholar
[15] Zhang, X., Kale, D. M., and Jenekhe, S. A., Macromolecules 35, 382 (2002).Google Scholar
[16] Redecker, M., Bradley, D. D. C., Inbasekaran, M., and Woo, E. P., Appl. Phys. Lett. 73, 1565 (1998).Google Scholar
[17] Bradley, D. D. C., Grell, M., Long, X., Mellor, H., Grice, A., Inbasekaran, M., and Woo, E. P., Proc. SPIE 3145, 254 (1997).Google Scholar
[18] Grell, M., Bradley, D., Ungar, G., Hill, J., and Whitehead, K. S., Macromolecules 32, 5810 (1999).Google Scholar
[19] Bliznyuk, V. N., Carter, S. A., Scott, J. C., Klarner, G., Miller, R. D., and Miller, D. C., Macromolecules 32, 361 (1999).Google Scholar
[20] Zeng, G., Yu, W.-L., Chua, S.-J., and Huang, W., Macromolecules 35, 6907 (2002).Google Scholar
[21] Kreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V. Y., Scott, J. C., and Miller, R. D., Macromolecules 31, 1099 (1998).Google Scholar
[22] Ego, C., Grimsdale, A. C., Uckert, F., Yu, G., Srdanov, G., and Müllen, K., Adv. Mater. 14, 809 (2002).Google Scholar
[23] Pogantsch, A., Wenzl, F. P., List, E. J. W., Leising, G., Grimsdale, A. C., and Müllen, K., Adv. Mater. 14, 1061 (2002).Google Scholar
[24] Miteva, T., Meisel, A., Knoll, W., Nothofer, H. G., Scherf, U., Müller, D. C., Meerholz, K., Yasuda, A., and Neher, D., Adv. Mater. 13, 565 (2001).Google Scholar
[25] Fung, M. K., Lai, S. L., Tong, S. W., Chan, M. Y., Lee, C. S., Lee, S. T., Wu, W. W., Inbasekaran, M., and O'Brien, J. J., Appl. Phys. Lett. 81, 1497 (2002).Google Scholar
[26] Sainova, D., Miteva, T., Nothofer, H. G., Scherf, U., Glowacki, I., Ulanski, J., Fujikawa, H., and Neher, D., Appl. Phys. Lett. 76, 1810 (2000).Google Scholar
[27] Weinfurtner, K.-H., Fujikawa, H., Tokito, S., and Taga, Y., Appl. Phys. Lett. 76, 2502 (2000).Google Scholar
[28] Grice, A. W., Bradley, D. D. C., Bernius, M. T., Inbasekaran, M., Wu, W. W., and Woo, E. P., Appl. Phys. Lett. 73, 629 (1998).Google Scholar
[29] Burland, D. M., Miller, R. D., and Walsh, C. A., Chem. Rev. 94, 31 (1994).Google Scholar
[30] Floudas, G., Antonietti, M., and Forster, S., J. Chem. Phys. 113, 3447 (2000).Google Scholar
[31] Chung, S. and Stevens, J., Am. J. Phys. 59, 1024 (1991).Google Scholar
[32] Dhinojwala, A., Wong, G., and Torkelson, J., Macromolecules 25, 7395 (1992).Google Scholar
[33] Lindsey, C. and Patterson, G., J. Chem. Phys. 73, 3348 (1980).Google Scholar
[34] Singer, K. and King, L., J. Appl. Phys. 70, 3251 (1991).Google Scholar
[35] Dureiko, R. D., Schuele, D. E., and Singer, K. D., J. Opt. Soc. Am. B 15, 338 (1998).Google Scholar
[36] Guan, H. W., Wang, C. H., and Gu, S. H., J. Chem. Phys. 100, 8454 (1994).Google Scholar
[37] Kaatz, P., Pretre, P., Meier, U., Stalder, U., Bosshard, C., and Gunter, P., Macromolecules 29, 1666 (1996).Google Scholar
[38] Stracke, A., Bayer, A., Zimmermann, S., Wendorff, J. H., Wirges, W., Bauer-Gogonea, S., Bauer, S., and Gerhard-Multhaupt, R., J. PHys. D: Appl. PHys. 32, 2996 (1999).Google Scholar
[39] Wang, H., Jarnagin, R. J., and Samulski, E. T., Macromolecules 27, 4705 (1994).Google Scholar
[40] Teraoka, I., Jungbauer, D., Reck, B., Yoon, D. Y., Twieg, R., and Willson, C. G., J. Appl. Phys. 69, 2568 (1991).Google Scholar
[41] Binnig, G., Quate, C. F., and C., G., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
[42] Sills, S. and Overney, R. M., J. Chem. Phys. 120, 5334 (2004).Google Scholar
[43] Overney, R. M., Tindall, G., and Frommer, J., in Handbook of Micro/Nano Tribolog, edited by Bhushan, B. (Springer-Verlag, Heidelberg, Germany, 2003).Google Scholar
[44] Gray, T., Buenviaje, C., Zheng, L., Jenekhe, S. A., Jen, A. K.-Y., and Overney, R. M., Appl. Phys. Lett. 83, 2563 (2003).Google Scholar
[45] Overney, R. M., Buenviaje, C., Luginbuehl, R., and Dinelli, F., J. Thermal Anal. and Cal. 59, 205 (2000).Google Scholar
[46] Buenviaje, C., Dinelli, F., and Overney, R. M., Macromolecular Symposia 167, 201 (2001).Google Scholar
[47] Ge, S., Pu, Y., Zhang, W., Rafailovich, M., Sokolov, J., Buenviaje, C., Buckmaster, R., and Overney, R. M., Physical Review Letters 85, 2340 (2000).Google Scholar
[48] Overney, R. M., Tyndall, G., and Frommer, J., in Handbook of Nanotechnolgy, edited by Bhushan, B. (Springer Verlag, Heidelberg, 2004).Google Scholar
[49] Gray, T., Jen, A. K. Y., and Overney, R. M..Google Scholar
[50] Pokrovskii, V. N., Mesoscopic theory of polymer dynamics (Kluwer Academic Publishers, Dordrecht, 2000).Google Scholar
[51] Sills, S. and Overney, R. M., Phys. Rev. Lett. 91, 095501(1 (2003).Google Scholar
[52] Sills, S. E., Overney, R. M., Chau, W., Lee, V. Y., Miller, R. D., and Frommer, J., J. Chem. Phys. 120, 5334 (2004).Google Scholar
[53] Sills, S. E., Gray, T., and Overney, R. M., J. Chem. Phys. 123, 134902 (2005).Google Scholar
[54] Ferry, J. D., Viscoelastic Properties of Polymers (John Wiley, New York, 1980).Google Scholar
[55] Luo, J., Liu, S., Haller, M., Liu, L., Ma, H., and Jen, A. K.-Y., Adv. Mater. 14, 1763 (2002).Google Scholar
[56] Teng, C. C. and Man, H. T., Appl. Phys. Lett. 56, 1734 (1990).Google Scholar
[57] Neumeister, J. M. and Ducker, W. A., Rev. Sci. Instrum. 65, 2527 (1994).Google Scholar
[58] Meyer, E., Overney, R. M., Dransfeld, K., and Gyalog, T., Nanoscience: Friction and Rheology on the Nanometer Scale (NWorld Scientific Publ., Singapore, 1998).Google Scholar
[59] Buenviaje, C. K., Ge, S. R., Rafailovich, M. H., and Overney, R. M., Mat. Res. Soc. Symp. Proc. 552, 187 (1998).Google Scholar
[60] Wei, J. H., He, M., and Overney, R. M., J. Membr. Sci., in press. (2005).Google Scholar
[61] Gray, T., Overney, R. M., Haller, M., Luo, J., and Jen, A. K.-Y., Appl. Phys. Lett. 86, 211908 (2005).Google Scholar
[62] Sills, S., Overney, R. M., Chau, W., Lee, V. Y., Miller, R. D., and Frommer, J., Journal of Chemical Physics 120, 5334 (2004).Google Scholar
[63] Yu, W.-L., Pei, J., Huang, W., and Heeger, A. J., Adv. Mater. 12, 828 (2000).Google Scholar
[64] Park, J. H., Lim, Y. T., Park, O., Yu, J.-W., Kim, Jai K., and Kim, Y. C., Mat. Sci. Eng. C 24, 75 (2004).Google Scholar
[65] Kreyenschmidt, M., Klaerner, G., Fuhrer, T., Ashenhurst, J., Karg, S., Chen, W. D., Lee, V.Y, Scott, J. C., and Miller, R. D., Macromolecules 32, 1099 (1998).Google Scholar