Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:47:20.134Z Has data issue: false hasContentIssue false

Nafion® Membranes: Molecular Diffusion, Proton Conductivity and Proton Conduction Mechanism

Published online by Cambridge University Press:  25 February 2011

Klaus-Dieter Kreuer
Affiliation:
Max-Planck-Institut für Festkörperforschung Heisenbergstr.1, W-7000 Stuttgart-80, Germany
Thomas Dippel
Affiliation:
Max-Planck-Institut für Festkörperforschung Heisenbergstr.1, W-7000 Stuttgart-80, Germany
Wolfgang Meyer
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10 W-6500 Mainz, Germany
Joachim Maier
Affiliation:
Max-Planck-Institut für Festkörperforschung Heisenbergstr.1, W-7000 Stuttgart-80, Germany
Get access

Abstract

H-PFG-NMR diffusion and proton conductivity data for NAFION® 117 is presented as a function of temperature and water content. From this, H2O diffusion on a molecular scale is concluded to be similar to the one in bulk water. But “geometrical” restrictions of diffusion lead to a decreasing pre-exponential factor, i.e. decreasing macroscopic diffusion coefficient with decreasing water content. It is shown that proton conductivity is correlated with water diffusion for low degrees of hydration (vehicle mechanism). With increasing hydration there is an increasing contribution from “structure diffusion” culminating in an amplification factor of A = 2.5 for fully hydrated protonic NAFION® 117 at room temperature. The bonding of water in NAFION® as well as the local environment (hydration) of the acidic proton are concluded to be similar as in acidic aqueous solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pourcelly, G. and Gavach, C., in Proton Conductors, edited by Colomban, Ph. (Cambridge University Press, 1992) p.295 Google Scholar
[2] Eisenberg, A. and Yeager, H.L., Perfluorinated lonomer Membranes, (A.C.S. Symposium Series no. 180, 1982).Google Scholar
[3] Kreuer, K.-D., in Proton Conductors, edited by Colomban, Ph. (Cambridge University Press, 1992) p.474 Google Scholar
[4] Falk, M., Can. J. Chem. 58 1495 (1980)Google Scholar
[5] Sivashinsky, N. and Tanny, G.B., J. Appl. Polymer Science 26 2625 (1981)Google Scholar
[6] Zawodzinski, Th. Jr., Neeman, M., Sillerud, L.O., Gottesfeld, Sh., J. Phys. Chem. 95 6040 (1991).Google Scholar
[7] Dippel, Th., Kreuer, K.-D., Solid State Ionics 46 3 (1991)Google Scholar
[8] Dippel, Th., Kreuer, K.-D., Lassègues, J.C., Rodriguez, D., Solid State Ionics (Proc. VI SSPC, Villard de Lans, 1992) in pressGoogle Scholar
[9] Pushpa, K.K., Nandan, D., Iyer, R.M., J. Chem. Soc. Faraday Trans 1 84, 2047 (1988)Google Scholar
[10] Dippel, Th., Kreuer, K.-D., Hampele, M., Rabenau, A., Proc. XXV Congress Ampere, Stuttgart, 1990 p.44 Google Scholar
[11] Stilbs, P., in Progress in NMR Spectroscopy 19, edited by Emsley, J.W., Feeney, J., Sutcliffe, L.H. (Pergamon Press, 1987) p. 1 Google Scholar
[12] Kreuer, K.-D., Weppner, W., Rabenau, A., Angew. Chem. 94, 224 (1982); Angew. Chem. (Int. Ed. Engl.) 21 208 (1982)Google Scholar
[13] Kreuer, K.-D., Weppner, W., Rabenau, A., Mat. Res. Bull. 17 501 (1982)Google Scholar
[14] Kriger, J. and Ruthven, D.M., Diffusion in Zeolites and other Microporos Solids (John Wiley & Sons, 1992)Google Scholar
[15] Kreuer, K.-D., in preparationGoogle Scholar
[16] Escoubes, M. and Pinéri, M., in Perfluorinated lonomer Membranes, edited by Eisenberg, A., Yeager, H.L. (A.C.S. Symposium Series no. 180, 1982) p. 9 Google Scholar
[17] Stauffer, D., Introduction to Percolation Theory (Taylor & Francis, London and Philadelphia, 1985)Google Scholar
[18] Slade, R.C.T., Barker, J., Strange, J.H., Solid State Ionics 35 11 (1989)Google Scholar
[19] Volino, F., Pinéri, M., Dianoux, A.J., J. Polymer Science 20 481 (1982)Google Scholar