Published online by Cambridge University Press: 01 February 2011
A multiplexer is a device that combines two or more signals onto a single output without losing their specificity. In this paper we present results on the use of multilayered a-SiC:H heterostructures either as wavelength-division multiplexing or demultiplexing device (WDM). The WDM is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO double heterostructure which faces the modulated light incoming together from different beams, each one with a specific wavelength and period. By reading out, at different applied bias, the photocurrent generated by all the incoming optical carriers, the information is multiplexed or demultiplexed and can be transmitted and recovered again. The devices were characterized through spectral response measurements, under different electrical bias and frequencies. Results show that in the multiplexing mode the output signal is balanced by the wavelength of each incoming optical carrier and modulated by their frequencies. In the demultiplexing mode the photocurrent is controlled by the applied voltage and optical bias allowing to regain the transmitted information. An electrical model is presented to explain the device operation.