Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:39:54.435Z Has data issue: false hasContentIssue false

Monte Carlo Simulations on SIMD Computer Architectures

Published online by Cambridge University Press:  26 February 2011

C. P. Burmester
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley, CA: and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.
L. T. Wille
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431.
R. Gronsky
Affiliation:
Department of Materials Science and Mineral Engineering, University of California at Berkeley, CA: and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.
Get access

Abstract

Algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest. and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blank, T., Proceedings of the CompCon Spring 1990, 35th IEEE Computer Society International Meeting (February 1990) 20.Google Scholar
2. Becher, J. D. and Hansen, K. M., MasPar Computer Corporation Technical Report TROO1.1091 (November 1991).Google Scholar
3. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., J. Chem. Phys. 21 (1953) 1087.CrossRefGoogle Scholar
4. Chowdhury, D. and Stauffer, D., J. Stat. Phys. 59 (1990) 1019.CrossRefGoogle Scholar
5. Schulman, L. and Seiden, P. E., Science 233 (1986) 425.CrossRefGoogle Scholar
6. Phani, M. K., Lebowitz, J. L., Kalos, M. H. and Tsai, C. C., Phys. Rev. Lett. 42 (1979) 577.CrossRefGoogle Scholar
7. Binder, K. and Landau, D. P., Surf. Sci. 61 (1976) 577.CrossRefGoogle Scholar
8. Wille, L. T., Berera, A., and Fontaine, D. de, Phys. Rev. Lett. 60, (1988) 1065.CrossRefGoogle Scholar
9. Adelman, D., Burmester, C. P., Wille, L. T., Sterne, P. A., and Gronsky, R., submitted.Google Scholar
10. Landau, D. P. and Stauffer, D., Journal de Physique 50 (1989) 509.CrossRefGoogle Scholar
11. Heermann, D. W. and Burkitt, A. W., Parallel Computing 13 (1990) 345.CrossRefGoogle Scholar
12. Heermann, D. W. and Burkitt, A. W., Parallel Algorithms in Computational Science, Springer Series in Information Sciences, 24, Springer-Verlag, New York (1990).Google Scholar
13. Slaets, J. F. W. and Travieso, G., Comp. Phys. Comm. 56 (1989) 63.CrossRefGoogle Scholar
14. Onsager, L., Phys. Rev. 65 (1944) 117.CrossRefGoogle Scholar
15. Somsky, W. R. and Gubematis, J. E., Comp. in Phys. 6 (1992) 178.CrossRefGoogle Scholar
16. Swendsen, R. H. and Wang, J., Phys. Rev. Lett. 57 (1986) 2607.CrossRefGoogle Scholar
17. Dewar, R. and Harris, C. K., J. Phys. A: Math. Gen. 20 (1987) 985.CrossRefGoogle Scholar
18. Brower, R. C., Tamayo, P.. and York, B., Jour. of Stat. Phys. 63 (1991) 73.CrossRefGoogle Scholar
19. Babalievski, F. V., Comp. Phys. Comm. 67 (1992) 453.CrossRefGoogle Scholar