Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:39:05.775Z Has data issue: false hasContentIssue false

Molybdenum and Vanadium Oxide Polycrystalline Films: Properties and Application to Lithium Microbatteries

Published online by Cambridge University Press:  10 February 2011

B. Yebka
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center, Warren, MI 48090
L. El-Farh
Affiliation:
Laboratoire des Milieux Desordonnes et Heterogenes, UMR 7603, University Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
C. Julien
Affiliation:
Laboratoire des Milieux Desordonnes et Heterogenes, UMR 7603, University Pierre et Marie Curie, 4 place Jussieu, 75252 Paris 05, France
G.A. Nazri
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center, Warren, MI 48090
Get access

Abstract

We report on the growth of molybdenum and vanadium oxide films, i.e., MOO3, V205, and V6013, and their application as positive electrodes in lithium microbatteries. We have characterized various polycrystalline samples and studied how their structural and electrical properties are affected by the different preparation conditions. The highest quality films were grown on silicon substrate maintained at 250°C and annealed at 300°C. It is shown that the growth conditions play an important role in the electrochemical properties of the film. Both thermodynamic and kinetic parameters are strongly dependent on film morphology and stoichiometry. Microbatteries fabricated with cathodes formed at moderate temperature have shown a volumetric capacity about 80 μAh/μm/cm2. The cells exhibit a monotonous discharge profile indicating that the cathode materials remain single phase even for a large degree of intercalation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Julien, C., in Handbook of Solid State Chemistry, edited by Gellings, P.J. and Bouwmeester, H.J.M. (CRC Press, Boca Raton, FL), 371 (1997).Google Scholar
[2] Julien, C., and Nazri, G.A., Solid State Batteries, Materials Design and Optimization, Kluwer, Boston, (1994).Google Scholar
[3] Julien, C., Hussain, O.M., Et-Farh, L., and Balkanski, M., Solid State Ionics 53/56, 400 (1992).Google Scholar
[4] Julien, C., El-Farh, L., Balkanski, M., Hussain, O.M., and Nazri, G.A., Appl. Surf Sci. 65/66, 325 (1993).Google Scholar
[5] Julien, C., Nazri, G.A., Guesdon, J.P., Gorenstein, A., Khetfa, A., and Hussain, O.M., Solid State Ionics 73, 319 (1994).Google Scholar
[6] Julien, C., Khelfa, A., Guesdon, J.P., Tuncheva, V., and Gendron, F., Ionics, vol. 1, N3, 1 (1997).Google Scholar
[7] Gorenstein, A., Khelfa, A., Guesdon, J.P., Nazri, G.A., Hussain, O.M., Ivanov, I., and Julien, C., Solid State Ionics 76, 133 (1995).Google Scholar
[8] Ramana, C.V., Hussain, O.M., Naidu, B. Srinivasulu, Julien, C., and Balkanski, M., Mater. Sci. Eng. B 52, 32 (1998).Google Scholar
[9] Weppner, W., and Huggins, R.A., J. Electrochem. Soc. 124,1569 (1977).Google Scholar
[10] Julien, C., and Nazri, G.A., Solid State Ionics 68, 111 (1994).Google Scholar
[11] Maier, J., Maier. Res. Soc. Symp. Proc. 210, 499 (1991).Google Scholar
[12] Kumagai, N., Kitamoto, H., Baba, M., Vidal, S. Durand, Devilliers, D., and Groult, H., J. Appl- Electrochem. 28, 41 (1998).Google Scholar
[13] Julien, C., Yebka, B., Ziolkiewicz, S., and Doi, A., The Electrochem. Soc. Proc. 97–24, 862 (1998).Google Scholar
[14] Julien, C., Yebka, B., and Guesdon, J.P., Ionics Vol 1 N4, 316 (1995).Google Scholar
[15] Murawski, L., Gledel, C., Sanchez, C., Livage, J., and Audiere, J.P., J. Non-Cryst. Solids 89, 98 (1987).Google Scholar
[16] West, K., Zachau-Christiansen, B., Skaarup, S.V., and Poulsen, F.W., Solid State Ionics 57, 41 (1992).Google Scholar
[17] Cocciantelli, J.M., Doumerc, J.P., Pouchard, M., Broussely, M., and Labat, J., J. Power Sources 34, 103 (1991).Google Scholar
[18] Baudry, P., Aegerteer, M.A., Deroo, D., and Valla, B., J. Electrochem. Soc. 138, 460 (1991).Google Scholar
[19] Bates, J.B., Gruzalski, G.R., Dudney, N.J., Luck, C.F., and Yu, X., Solid State Ionics 70–71, 619 (1994).Google Scholar
[20] West, K., Zachau-Christiansen, B., and Jacobsen, T., Electrochim Acta 28, 1829 (1983).Google Scholar
[21] Julien, C.. Samaras, I., Tsakiri, M., Dzwonkowski, P., and Balkanski, M., Mater- Sci. Eng. B3, 25 (1989).Google Scholar
[22] Liquan, C., and Schoonman, J., Solid State Ionics 67, 17 (1994).Google Scholar